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First	measurement	of	Λ from	GW170817

• Constraint	is	on	the	
combined,	effective	tidal	
deformability:

• Measurement	“disfavors	
EOS	that	predict	less	
compact	stars”

low-spin case and (1.0, 0.7) in the high-spin case. Further
analysis is required to establish the uncertainties of these
tighter bounds, and a detailed studyof systematics is a subject
of ongoing work.
Preliminary comparisons with waveform models under

development [171,173–177] also suggest the post-
Newtonian model used will systematically overestimate
the value of the tidal deformabilities. Therefore, based on
our current understanding of the physics of neutron stars,
we consider the post-Newtonian results presented in this
Letter to be conservative upper limits on tidal deform-
ability. Refinements should be possible as our knowledge
and models improve.

V. IMPLICATIONS

A. Astrophysical rate

Our analyses identified GW170817 as the only BNS-
mass signal detected in O2 with a false alarm rate below
1=100 yr. Using a method derived from [27,178,179], and
assuming that the mass distribution of the components of
BNS systems is flat between 1 and 2 M⊙ and their
dimensionless spins are below 0.4, we are able to infer
the local coalescence rate density R of BNS systems.
Incorporating the upper limit of 12600 Gpc−3 yr−1 from O1
as a prior, R ¼ 1540þ3200

−1220 Gpc−3 yr−1. Our findings are

consistent with the rate inferred from observations of
galactic BNS systems [19,20,155,180].
From this inferred rate, the stochastic background of

gravitational wave s produced by unresolved BNS mergers
throughout the history of the Universe should be compa-
rable in magnitude to the stochastic background produced
by BBH mergers [181,182]. As the advanced detector
network improves in sensitivity in the coming years, the
total stochastic background from BNS and BBH mergers
should be detectable [183].

B. Remnant

Binary neutron star mergers may result in a short- or long-
lived neutron star remnant that could emit gravitational
waves following the merger [184–190]. The ringdown of
a black hole formed after the coalescence could also produce
gravitational waves, at frequencies around 6 kHz, but the
reduced interferometer response at high frequencies makes
their observation unfeasible. Consequently, searches have
been made for short (tens of ms) and intermediate duration
(≤ 500 s) gravitational-wave signals from a neutron star
remnant at frequencies up to 4 kHz [75,191,192]. For the
latter, the data examined start at the time of the coalescence
and extend to the end of the observing run on August 25,
2017. With the time scales and methods considered so far
[193], there is no evidence of a postmerger signal of

FIG. 5. Probability density for the tidal deformability parameters of the high and low mass components inferred from the detected
signals using the post-Newtonian model. Contours enclosing 90% and 50% of the probability density are overlaid (dashed lines). The
diagonal dashed line indicates the Λ1 ¼ Λ2 boundary. The Λ1 and Λ2 parameters characterize the size of the tidally induced mass
deformations of each star and are proportional to k2ðR=mÞ5. Constraints are shown for the high-spin scenario jχj ≤ 0.89 (left panel) and
for the low-spin jχj ≤ 0.05 (right panel). As a comparison, we plot predictions for tidal deformability given by a set of representative
equations of state [156–160] (shaded filled regions), with labels following [161], all of which support stars of 2.01M⊙. Under the
assumption that both components are neutron stars, we apply the function ΛðmÞ prescribed by that equation of state to the 90% most
probable region of the component mass posterior distributions shown in Fig. 4. EOS that produce less compact stars, such as MS1 and
MS1b, predict Λ values outside our 90% contour.
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What	does	Λ measure?	

• .
• k2 depends	on	the	EOS	and	compactness
• k2 ~0.05-0.15			 (Hinderer	2008;	Hinderer	et	al.	2010;	Postnikov et	al.	2010)
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What	does	Λ measure?	

• Expectation:	Λ measures	a	mass-weighted	compactness
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Evidence	of	a	universal	relation	between	Λ and	R

2

that e⇤ can be used as a direct probe of the neutron star
radius, rather than of the compactness as is typically as-
sumed.
In §2, we describe the measured properties of

GW170817. We show in §3 that the e↵ective tidal de-
formability is approximately mass indepdenent, when the
chirp mass is specified. In §4, we use the Newtonian limit
to show analytically that the mass-indepdendence arises
from the inherenet symmetry in the expression for the
tidal deformability. Finally, in §5, we perform a full
Bayesian inference of the neutron star EOS from the
measured tidal deformability and chirp mass, and a lim-
ited number of prior physical constraints. With the full
Bayesian framework, we find that the most likely radius
is between R = 11�12.5 km, with a maximum likelihood
near 11.5 km.

2. PROPERTIES OF GW170817

The properties of GW170817 were inferred by match-
ing the observed waveform with a freuqency-domain
post-Newtonian waveform model (Sathyaprakash & Dhu-
randhar 1991), with modifications to account for tidal
interactions (Vines et al. 2011), point-mass spin-spin in-
teractions (Mikóczi et al. 2005; Arun et al. 2011; Bohé
et al. 2015; Mishra et al. 2016), and e↵ects due to spin-
orbit coupling (Bohé et al. 2013) The LIGO analysis us-
ing these models is summarized in Abbott et al. (2017a)
and references therein.
One of the most tightly constrained properties that was

inferred is the chirp mass, defined as

Mc =
(m1m2)3/5

(m1 +m2)1/5
= m1

q3/5

(1 + q)1/5
, (2)

where m1 and m2 are the masses of the primary and the
secondary neutron stars, respsectively and we have intro-
duced the mass ratio, q ⌘ m2/m1. The chirp mass was
constrained to Mc = 1.188+0.004

�0.002 M� at the 90% con-
fidence level, independently of the particular waveform
model or priors chosen (Abbott et al. 2017a).
By assuming low-spin priors, as is consistent with the

binary neutron star systems that have been observed in
our Galaxy, the component masses were inferred from the
chirp mass to lie within the ranges m1 2 (1.36, 1.60) M�
and m2 2 (1.17, 1.36) M�, with a mass ratio of q 2
(0.7, 1.0), all at the 90% confidence level (Abbott et al.
2017a). These masses are consistent with the masses of
previously-observed masses in binary neutron star sys-
tems (see Özel & Freire 2016 for a recent review of neu-
tron star mass measurements).
GW170817 also provided constraints on the e↵ective

tidal deformability of the system, given by

e⇤ =
16

13

(m1 + 12m2)m
�1
1 �1 + (m2 + 12m1)m

�1
2 �2

(m1 +m2)5
,

(3)
(Flanagan & Hinderer 2008; Favata 2014). In eq. (1),
we saw that the tidal Love number depends only on
the stellar radius and the tidal apsidal constant, which
in turn depends on the equation of state and com-
pactness. Combining these expressions, we can explic-
ity write the dependence of the tidal deformability as
e⇤ = e⇤(m1,m2, R1, R2,EOS).

Abbott et al. (2017a) infer the e↵ective tidal deforma-
bility for GW170817 to e⇤ . 800 at the 90% confidence
level, which already rules out the softest EOS. In the fol-
lowing analysis, we will show that this measurement can
also be used to directly infer the radii of the coalesced
neutron stars, independently of the component masses.

3. EFFECTIVE TIDAL DEFORMABILITY FOR GW170817

We start with a simple illustration of our key result.
Figure 1 shows the e↵ective tidal deformabilities as a
function of the stellar radii for several realistic EOS. We
calculated these tidal deformabilities for various values of
m1 that lie within the mass range inferred for GW170817
(shown in di↵erent symbols). All values for m2 are cal-
culated assuming a fixed chirp mass, Mc = 1.188.

Fig. 1.— E↵ective tidal deformability as a function of the ra-
dius of the primary neutron star. The tidal deformability is cal-
culated for various primary masses (corresponding to the di↵erent
symbols) using several proposed equations of state (corresponding
to the di↵erent colors).The mass of the secondary neutron star is
found assuming the chirp mass, Mc = 1.188 M�, from GW170817.

The observed 90%-confidence upper limit on e⇤ is shown as the dot-
ted line. We find that e⇤ is relatively insensitive to m1 but scales
strongly with radius, and that the measurement from GW170817
implies R . 13 km.

We find that e⇤ is almost entirely insensitive to the mass
of the component stars for the relevant mass range, and
depends instead primarily on the radius of the star. In
particular, e⇤ changes by nearly an order of magnitude be-
tween R = 10 km and R = 15 km, but changes negligibly
for masses spanning the full range ofm1 = 1.36�1.6M�.
An upper limit of e⇤ . 800 immediately excludes radii
above ⇠13 km at the 90% confidence level, without re-
quiring detailed knowledge of m1. As shown in Fig. 1,
this rules out the softest EOS, such as the hyperonic EOS
H4 (Lackey et al. 2006) and the nucleonic EOS with a
low symmetry energy of 25 MeV, MS1b (Müller & Serot
1996)
The weak dependence of e⇤ on the component masses

is surprsing and, to our knowledge, has not been seen
before. It renders e⇤ a direct probe of the neutron star
radius, rather than of the compactness as is typically
assumed. We turn now to an analytic explanation of the
origin of this result.

4. UNIVERSAL RELATIONS AND THE NEWTONIAN LIMIT

Raithel,	Özel,	and	Psaltis (in	prep).

• Λ1,	Λ2 are	calculated	for	
a	range	of	m1 and	m2	

• All	combinations	obey	
observed	chirp	mass,	
Mc=1.188	M⊙

• GW170817	probes	
radius	directly,	not	
compactness!
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Analytic	origin

• Use	Newtonian	expression	for	
each	star:

• Or	in	terms	of	universal	
relations	of	YY	2017:
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In order to see why the dependence on mass in eq. (3)
for e⇤ is so weak, we must introduce an explicit function
for the tidal deformability. We do so in two regimes.
In the fully relativitsic limit, we use the quasi-universal
relation between ⇤ = �m5 and the compactness, found
originally in Yagi & Yunes (2013) to agree for all EOS to
within a few percent. In subsequent work, Yagi & Yunes
(2017) found that the relationship can be written as

C = a0 + a1 ln⇤+ a2(ln⇤)
2, (4)

where C ⌘ GM/Rc2 is the compactness and the co-
e�cients are fit to be a0 = 0.360, a1 = �0.0355, and
a2 = 0.000705. The relation holds to within 6.5% for a
wide variety of EOS (Yagi & Yunes 2017). While this
relationship eliminates the EOS-dependence in ⇤ and
allows us to write e⇤ as a function only of the compo-
nent masses and radii, it does not make the weak mass-
dependence obvious.
Thus, we also introduce an expression for the tidal Love

number in the Newtonian limit. Yagi & Yunes (2013)
showed that the Newtonian expression for the tidal Love
number for a polytropic EOS with index n = 1 is simply

⇤N =
15� ⇡2

3⇡2

1

C5
. (5)

This expression for ⇤N depends on the circumferential
radius; however, the observed tidal deformability is sen-
sitive to the proper radius. In order to use the Newtonian
expression, therefore, we must account for the appropri-
ate redshift, i.e.

⇤N,1 =
15� ⇡2

3⇡2

 

Rc2

Gm

r

1� 2Gm

Rc2

!5

(6)

We can combine this with eq. (3) to write the Newto-
nian e↵ective tidal deformability as

e⇤N,1 =
16

13

15� ⇡2

3⇡2

R5

m5
1

⇥

(1 + 12q)
�

1� 2Gm1
Rc2

�5/2
+ (1 + 12/q)

⇣

1� 2Gqm1

Rc2

⌘5/2

(1 + q)5
,

(7)

where we have assumed that radii for the two neutron
stars are the same, as is approximately true for n = 1
polytropic EOS. Finally, we can eliminate m1 in favor of
Mc and q with eq. (2), yielding an expression for e⇤N,1
in terms of only q, Mc, and R.
This Newtonian form of e⇤N,1 is much simpler to work

with, but is it a good enough approximation? We show
e⇤ and e⇤N,1 as functions of m1 in Fig. 2 as the solid
and dashed lines, respectively, for fixed radii of R=10,
11, and 12 km. We find that the Newtonian approxi-
mation provides a reasonable approximation of the full
expression for e⇤, calculated using the quasi-universal re-
lation. Thus, we focus now on e⇤N,1 and understanding
its dependence on the masses.
In order to highlight the mass dependence of e⇤N,1,

we performed a series expansion assuming q = (1 � ✏),
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Fig. 2.— E↵ective tidal deformability as a function of the pri-
mary mass, m1. We calculate e⇤ for three fixed radii, R=10, 11, and
12 km, shown in purple, blue, and green, respectively. The solid
lines show the tidal deformability calculated using the empircally-
fit universal relation between ⇤i and the compactness from Yagi
and Yunes, while the dashed lines show the GR-corrected Newto-
nian approximation for ⇤i from eq. (XXX). The Newtonian ap-
proximation is a good approximation of the full GR result.

TABLE 1
e⇤N expansion terms for the chirp mass measured

from GW170817.

Radius Coe�cient Expansion

R = 10 km 143.4 1 + 0.451✏2 +O(✏3)
R = 11 km 268.0 1 + 0.319✏2 +O(✏3)
R = 12 km 465.8 1 + 0.225✏2 +O(✏3)
R = 13 km 764.6 1 + 0.156✏2 +O(✏3)

i.e., assuming that the mass ratio is close to unity and ✏
represents the deviation away from 1. We find

e⇤N,1 =
15� ⇡2

3⇡2
⇠�5(1� 2⇠)5/2

⇥


1� 3

108
(1� 2⇠)�2

�

10� 94⇠ + 83⇠2
�

✏2
�

+O(✏3),

(8)

where ⇠ is a “e↵ective compactness”,

⇠ =
21/5GMc

Rc2
. (9)

From eq. (8), we see that e⇤ scales approximately as
R5. When the mass ratio is close to one (i.e., when ✏ is
small), the masses add only a small correction. For the
measured chirp mass from GW170817, we calculate the
coe�cients for a few radii in Table 1. We note that the
mass dependence only enters at order ✏2; and even then,
the mass dependence enters only as a deviation from a
mass ratio of q = 1. We find that the weak dependence
on mass becomes even weaker as the radius increases.
However, even for R = 10 km, the mass dependent term
adds at most a ⇠4% correction to e⇤N for the mass ratio
range inferred for GW170817.

4.1. Black hole-neutron star mergers

Black hole-neutron star mergers are another source of
gravitational waves that may contain information about
the neutron star EOS. The tidal Love number of a black
hole is zero (Damour & Nagar 2009; Binnington & Pois-

R	=	12	km

R	=	11	km

R	=	10	km

Raithel,	Özel,	and	Psaltis (in	prep).

--- Newtonian	approximation
–– Universal	relation	of	YY	2017
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e�cients are fit to be a0 = 0.360, a1 = �0.0355, and
a2 = 0.000705. The relation holds to within 6.5% for a
wide variety of EOS (Yagi & Yunes 2017). While this
relationship eliminates the EOS-dependence in ⇤ and
allows us to write e⇤ as a function only of the compo-
nent masses and radii, it does not make the weak mass-
dependence obvious.
Thus, we also introduce an expression for the tidal Love

number in the Newtonian limit. Yagi & Yunes (2013)
showed that the Newtonian expression for the tidal Love
number for a polytropic EOS with index n = 1 is simply
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C5
. (5)

This expression for ⇤N depends on the circumferential
radius; however, the observed tidal deformability is sen-
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where we have assumed that radii for the two neutron
stars are the same, as is approximately true for n = 1
polytropic EOS. Finally, we can eliminate m1 in favor of
Mc and q with eq. (2), yielding an expression for e⇤N,1
in terms of only q, Mc, and R.
This Newtonian form of e⇤N,1 is much simpler to work

with, but is it a good enough approximation? We show
e⇤ and e⇤N,1 as functions of m1 in Fig. 2 as the solid
and dashed lines, respectively, for fixed radii of R=10,
11, and 12 km. We find that the Newtonian approxi-
mation provides a reasonable approximation of the full
expression for e⇤, calculated using the quasi-universal re-
lation. Thus, we focus now on e⇤N,1 and understanding
its dependence on the masses.
In order to highlight the mass dependence of e⇤N,1,

we performed a series expansion assuming q = (1 � ✏),

Fig. 2.— E↵ective tidal deformability as a function of the pri-
mary mass, m1. We calculate e⇤ for three fixed radii, R=10, 11, and
12 km, shown in purple, blue, and green, respectively. The solid
lines show the tidal deformability calculated using the empircally-
fit universal relation between ⇤i and the compactness from Yagi
and Yunes, while the dashed lines show the GR-corrected Newto-
nian approximation for ⇤i from eq. (XXX). The Newtonian ap-
proximation is a good approximation of the full GR result.

TABLE 1
e⇤N expansion terms for the chirp mass measured

from GW170817.

Radius Coe�cient Expansion

R = 10 km 143.4 1 + 0.451✏2 +O(✏3)
R = 11 km 268.0 1 + 0.319✏2 +O(✏3)
R = 12 km 465.8 1 + 0.225✏2 +O(✏3)
R = 13 km 764.6 1 + 0.156✏2 +O(✏3)

i.e., assuming that the mass ratio is close to unity and ✏
represents the deviation away from 1. We find

e⇤N,1 =
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�
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�

+O(✏3),

(8)

where ⇠ is a “e↵ective compactness”,

⇠ =
21/5GMc

Rc2
. (9)

From eq. (8), we see that e⇤ scales approximately as
R5. When the mass ratio is close to one (i.e., when ✏ is
small), the masses add only a small correction. For the
measured chirp mass from GW170817, we calculate the
coe�cients for a few radii in Table 1. We note that the
mass dependence only enters at order ✏2; and even then,
the mass dependence enters only as a deviation from a
mass ratio of q = 1. We find that the weak dependence
on mass becomes even weaker as the radius increases.
However, even for R = 10 km, the mass dependent term
adds at most a ⇠4% correction to e⇤N for the mass ratio
range inferred for GW170817.

4.1. Black hole-neutron star mergers

Black hole-neutron star mergers are another source of
gravitational waves that may contain information about
the neutron star EOS. The tidal Love number of a black
hole is zero (Damour & Nagar 2009; Binnington & Pois-
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relation between ⇤ = �m5 and the compactness, found
originally in Yagi & Yunes (2013) to agree for all EOS to
within a few percent. In subsequent work, Yagi & Yunes
(2017) found that the relationship can be written as
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2, (4)
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e�cients are fit to be a0 = 0.360, a1 = �0.0355, and
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wide variety of EOS (Yagi & Yunes 2017). While this
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allows us to write e⇤ as a function only of the compo-
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dependence obvious.
Thus, we also introduce an expression for the tidal Love
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where we have assumed that radii for the two neutron
stars are the same, as is approximately true for n = 1
polytropic EOS. Finally, we can eliminate m1 in favor of
Mc and q with eq. (2), yielding an expression for e⇤N in
terms of only q, Mc, and R.
This Newtonian form of e⇤N is much simpler to work

with, but is it a good enough approximation? We show
e⇤ and e⇤N as functions of m1 in Fig. 2 as the solid and
dashed lines, respectively, for fixed radii of R=10, 11,
and 12 km. We find that the Newtonian approximation
provides a reasonable approximation of the full expres-
sion for e⇤, calculated using the quasi-universal relation.
Thus, we focus now on e⇤N and understanding its depen-
dence on the masses.
In order to highlight the mass dependence of e⇤N , we

performed a series expansion assuming q = (1 � ✏), i.e.,

Fig. 2.— E↵ective tidal deformability as a function of the pri-
mary mass, m1. We calculate e⇤ for three fixed radii, R=10, 11, and
12 km, shown in purple, blue, and green, respectively. The solid
lines show the tidal deformability calculated using the empircally-
fit universal relation between ⇤i and the compactness from Yagi
and Yunes, while the dashed lines show the GR-corrected Newto-
nian approximation for ⇤i from eq. (XXX). The Newtonian ap-
proximation is a good approximation of the full GR result.
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mass ratio of q = 1. We find that the weak dependence
on mass becomes even weaker as the radius increases.
However, even for R = 10 km, the mass dependent term
adds at most a ⇠4% correction to e⇤N for the mass ratio
range inferred for GW170817.

4.1. Black hole-neutron star mergers

Black hole-neutron star mergers are another source of
gravitational waves that may contain information about
the neutron star EOS. The tidal Love number of a black
hole is zero (Damour & Nagar 2009; Binnington & Pois-



Analytic	origin

• Expand	combined	effective	deformability,	assuming	q	=	(1-ε)

3

In order to see why the dependence on mass in eq. (3)
for e⇤ is so weak, we must introduce an explicit function
for the tidal deformability. We do so in two regimes.
In the fully relativitsic limit, we use the quasi-universal
relation between ⇤ = �m5 and the compactness, found
originally in Yagi & Yunes (2013) to agree for all EOS to
within a few percent. In subsequent work, Yagi & Yunes
(2017) found that the relationship can be written as

C = a0 + a1 ln⇤+ a2(ln⇤)
2, (4)

where C ⌘ GM/Rc2 is the compactness and the co-
e�cients are fit to be a0 = 0.360, a1 = �0.0355, and
a2 = 0.000705. The relation holds to within 6.5% for a
wide variety of EOS (Yagi & Yunes 2017). While this
relationship eliminates the EOS-dependence in ⇤ and
allows us to write e⇤ as a function only of the compo-
nent masses and radii, it does not make the weak mass-
dependence obvious.
Thus, we also introduce an expression for the tidal Love

number in the Newtonian limit. Yagi & Yunes (2013)
showed that the Newtonian expression for the tidal Love
number for a polytropic EOS with index n = 1 is simply
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C5
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This expression for ⇤N depends on the circumferential
radius; however, the observed tidal deformability is sen-
sitive to the proper radius. In order to use the Newtonian
expression, therefore, we must account for the appropri-
ate redshift, i.e.
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We can combine this with eq. (3) to write the Newto-
nian e↵ective tidal deformability as
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where we have assumed that radii for the two neutron
stars are the same, as is approximately true for n = 1
polytropic EOS. Finally, we can eliminate m1 in favor of
Mc and q with eq. (2), yielding an expression for e⇤N,1
in terms of only q, Mc, and R.
This Newtonian form of e⇤N,1 is much simpler to work

with, but is it a good enough approximation? We show
e⇤ and e⇤N,1 as functions of m1 in Fig. 2 as the solid
and dashed lines, respectively, for fixed radii of R=10,
11, and 12 km. We find that the Newtonian approxi-
mation provides a reasonable approximation of the full
expression for e⇤, calculated using the quasi-universal re-
lation. Thus, we focus now on e⇤N,1 and understanding
its dependence on the masses.
In order to highlight the mass dependence of e⇤N,1,

we performed a series expansion assuming q = (1 � ✏),

Fig. 2.— E↵ective tidal deformability as a function of the pri-
mary mass, m1. We calculate e⇤ for three fixed radii, R=10, 11, and
12 km, shown in purple, blue, and green, respectively. The solid
lines show the tidal deformability calculated using the empircally-
fit universal relation between ⇤i and the compactness from Yagi
and Yunes, while the dashed lines show the GR-corrected Newto-
nian approximation for ⇤i from eq. (XXX). The Newtonian ap-
proximation is a good approximation of the full GR result.

TABLE 1
e⇤N expansion terms for the chirp mass measured

from GW170817.

Radius Coe�cient Expansion

R = 10 km 143.4 1 + 0.451✏2 +O(✏3)
R = 11 km 268.0 1 + 0.319✏2 +O(✏3)
R = 12 km 465.8 1 + 0.225✏2 +O(✏3)
R = 13 km 764.6 1 + 0.156✏2 +O(✏3)

i.e., assuming that the mass ratio is close to unity and ✏
represents the deviation away from 1. We find
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where ⇠ is a “e↵ective compactness”,

⇠ =
21/5GMc

Rc2
. (9)

From eq. (8), we see that e⇤ scales approximately as
R5. When the mass ratio is close to one (i.e., when ✏ is
small), the masses add only a small correction. For the
measured chirp mass from GW170817, we calculate the
coe�cients for a few radii in Table 1. We note that the
mass dependence only enters at order ✏2; and even then,
the mass dependence enters only as a deviation from a
mass ratio of q = 1. We find that the weak dependence
on mass becomes even weaker as the radius increases.
However, even for R = 10 km, the mass dependent term
adds at most a ⇠4% correction to e⇤N for the mass ratio
range inferred for GW170817.

4.1. Black hole-neutron star mergers

Black hole-neutron star mergers are another source of
gravitational waves that may contain information about
the neutron star EOS. The tidal Love number of a black
hole is zero (Damour & Nagar 2009; Binnington & Pois-

“Effective”	
compactness:	
Depends	only	on	R

Deviation	away	
from	equal	mass	

ratio	

Coefficient



Expansion	results

• Component	mass	
dependence	enters	at	O(ε2),	
and	only	as	deviation	away	
from	equal	mass	ratio

• Dependence	on	mass	even	
weaker	for	larger	radii

Raithel,	Özel,	and	Psaltis (in	prep).
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Λ is	a	direct	probe	of	NS	radius!~



How	do	we	make	further	use	of	deformability	
measurements?
• To	infer	the	underlying	equation	of	state:		need	Bayesian	inference
• We	use	parametric	EOS,	with	5	piecewise	polytropes

P(	EOS|	{Mc	,	Λ}	)			=	Ppr(	P1,	…,	P5	)	P(	{Mc	,	Λ}	|	EOS)		

• Nuclear	physics	information
• Hydrostatic	stability
• Causality
• 1.97	M ⊙ <		Mmax <	2.33	M ⊙

• 0.7		<	q	<1.0

Priors

5	piecewise	
polytropes

~ ~

Rezzolla et	al.	2018
Margalit &	Metzger	2017



Also	use	an	asymmetric	
Gaussian	for	the	chirp	mass:		
Mc =							 M ⊙

Example	inferences

1. Λ is	a	zero	centered	Gaussian,	with	σ =	490
2. Λ is	a	Gaussian	centered	at	400	with	σ =	240
3. No	data	at	all	(just	priors)

low-spin case and (1.0, 0.7) in the high-spin case. Further
analysis is required to establish the uncertainties of these
tighter bounds, and a detailed studyof systematics is a subject
of ongoing work.
Preliminary comparisons with waveform models under

development [171,173–177] also suggest the post-
Newtonian model used will systematically overestimate
the value of the tidal deformabilities. Therefore, based on
our current understanding of the physics of neutron stars,
we consider the post-Newtonian results presented in this
Letter to be conservative upper limits on tidal deform-
ability. Refinements should be possible as our knowledge
and models improve.

V. IMPLICATIONS

A. Astrophysical rate

Our analyses identified GW170817 as the only BNS-
mass signal detected in O2 with a false alarm rate below
1=100 yr. Using a method derived from [27,178,179], and
assuming that the mass distribution of the components of
BNS systems is flat between 1 and 2 M⊙ and their
dimensionless spins are below 0.4, we are able to infer
the local coalescence rate density R of BNS systems.
Incorporating the upper limit of 12600 Gpc−3 yr−1 from O1
as a prior, R ¼ 1540þ3200

−1220 Gpc−3 yr−1. Our findings are

consistent with the rate inferred from observations of
galactic BNS systems [19,20,155,180].
From this inferred rate, the stochastic background of

gravitational wave s produced by unresolved BNS mergers
throughout the history of the Universe should be compa-
rable in magnitude to the stochastic background produced
by BBH mergers [181,182]. As the advanced detector
network improves in sensitivity in the coming years, the
total stochastic background from BNS and BBH mergers
should be detectable [183].

B. Remnant

Binary neutron star mergers may result in a short- or long-
lived neutron star remnant that could emit gravitational
waves following the merger [184–190]. The ringdown of
a black hole formed after the coalescence could also produce
gravitational waves, at frequencies around 6 kHz, but the
reduced interferometer response at high frequencies makes
their observation unfeasible. Consequently, searches have
been made for short (tens of ms) and intermediate duration
(≤ 500 s) gravitational-wave signals from a neutron star
remnant at frequencies up to 4 kHz [75,191,192]. For the
latter, the data examined start at the time of the coalescence
and extend to the end of the observing run on August 25,
2017. With the time scales and methods considered so far
[193], there is no evidence of a postmerger signal of

FIG. 5. Probability density for the tidal deformability parameters of the high and low mass components inferred from the detected
signals using the post-Newtonian model. Contours enclosing 90% and 50% of the probability density are overlaid (dashed lines). The
diagonal dashed line indicates the Λ1 ¼ Λ2 boundary. The Λ1 and Λ2 parameters characterize the size of the tidally induced mass
deformations of each star and are proportional to k2ðR=mÞ5. Constraints are shown for the high-spin scenario jχj ≤ 0.89 (left panel) and
for the low-spin jχj ≤ 0.05 (right panel). As a comparison, we plot predictions for tidal deformability given by a set of representative
equations of state [156–160] (shaded filled regions), with labels following [161], all of which support stars of 2.01M⊙. Under the
assumption that both components are neutron stars, we apply the function ΛðmÞ prescribed by that equation of state to the 90% most
probable region of the component mass posterior distributions shown in Fig. 4. EOS that produce less compact stars, such as MS1 and
MS1b, predict Λ values outside our 90% contour.
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Both	give	90%	
interval	at	Λ =	800~



Λ =	400~ –– Max	L	solution
--- Universal	R- Λ relation~



Marginalized	to	see	
“density”	of	results

i.e.,	integrated	the	
priors	over	mass-
radius	volume

Λ =	400 –– Max	L	solution
--- Universal	R- Λ relation
–– Marginalized	results

~
~



Λ =	0 –– Max	L	solution
--- Universal	R- Λ relation
–– Marginalized	results

~
~

Marginalized	to	see	
“density”	of	results

i.e.,	integrated	the	
priors	over	mass-
radius	volume



No	data	
at	all!

–– Max	L	solution
--- Universal	R- Λ relation
–– Marginalized	results

~

Marginalized	to	see	
“density”	of	results

i.e.,	integrated	the	
priors	over	mass-
radius	volume



Conclusions

• Λ probes	the	radii	of	the	neutron	stars
• Full	Bayesian	inference	is	required	to	get	the	underlying	EOS
• Additional	measurements	of	Λ will	provide	new	constraints	on	the	EOS

~

~


