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NS merger: roadmap



Binary NS inspiral



Tidal effects in NS mergers

• Part of the orbital energy 
goes into tidal deformation

• Accelerated inspiral

• Imprinted on the 
gravitational waves

• Constrains dimensionless 
tidal parameter  
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Inspiral modeling

EOB-NR comparison: phasing.—The EOB resummed
tidal waveform is obtained following Refs. [2,49]. We
compare the EOB and NR quadrupole waveforms Rh22,
with Rðhþ − ih×Þ ¼

P
lmRhlm−2Ylm, by using a stan-

dard (time and phase) alignment procedure in the time
domain. Relative time and phase shifts are determined by
minimizing the L2 distance between the EOB and NR
phases integrated on a time interval corresponding to the
dimensionless frequency interval Iω ¼ MðωL;ωRÞ ¼
ð0.04; 0.06Þ for all EOS, except Γ2164, for which Iω ¼
ð0.0428; 0.06Þ as the simulation starts at higher GW
frequency. Such a choice for Iω allows one to average
out the phase oscillations linked to the residual eccentricity
(∼0.01) of the NR simulations.
A sample of time-domain comparisons for three repre-

sentative κT2 ’s is shown in Fig. 3. Top panels compare the
TEOBResum and NR waveforms real part and modulus.
Bottom panels show (i) phase and relative amplitude
differences between TEOBResum and NR, (ii) phase differ-
ence between the tidal Taylor T4 with NLO tides and 3PN
waveform (TT4) and NR, and (iii) NR phase uncertainty
(shaded region). The two vertical (dot-dashed) lines indi-
cate the alignment interval; as in Fig. 2, the markers
indicate the EOB (red) and NR (blue) mergers. The
crossing of the radius of the TEOBResum last stable orbit
(LSO) is indicated by a green marker. The time-domain
comparisons shows that for all κT2 the TEOBResum model is
compatible with NR data up to the merger within NR
uncertainties (at the 2σ level or better, both in phase and
amplitude). Note that the TT4 phasing performs system-
atically worse than TEOBResum.
Figure 3 is quantitatively completed by Table I, which

compares the phase differences ΔϕX ≡ ϕX − ϕNR with
X ¼ TT4, TEOBNNLO, TEOBResum evaluated (after time
alignment) at the moment of NR merger. The NR uncer-
tainty at merger δϕNR

NRmrg is also listed in the table. These
numbers indicate how the disagreement with NR system-
atically decreases when successively considering the
analytical models TT4, TEOBNNLO, and TEOBResum.
Such a hierarchy of qualities among analytical models is
confirmed by the gauge-invariant phasing diagnostic

QωðωÞ≡ ω2= _ω [13,15]. To clean up the eccentricity-driven
oscillations in the NR phase, we based our computation of
QNR

ω by starting from a simple, PN-inspired, six-parameter
fit of the NR frequency as a rational function of x ¼
½νðtc − tÞ=5 þ d2&−1=8 (similarly to Ref. [50]). For each κT2
we find QNR

ω ≈QTEOBResum
ω < QTEOBNNLO

ω < QTT4
ω < QBBH

ω
(see Fig. 4 for SLy135).
Merger characteristics.—The TEOBResum model, in

addition to giving good energetics EbðjÞ and phasing
ϕðtÞ up to NR mergers, has the remarkable feature of
intrinsically predicting the frequency location and physical
characteristics of mergers in good quantitative agreement
with NR results. This can have important consequences for
building analytical GW templates. More precisely, the two
quasiuniversal functional relations [46] Emrg

b ðκT2 Þ and
MωmrgðκT2 Þ [as well as jmrgðκT2 ) and the waveform ampli-
tude at merger Amrg

22 ðκT2 Þ≡ jRhmrg
22 jðκT2 Þ] predicted by

TEOBResum are close to the NR ones and significantly
closer than those predicted by TEOBNNLO (while PN does
not predict anymerger characteristic). ForEmrg

b and jmrg, see
Fig. 2. For MωmrgðκT2 Þ, the ratio ωmrg

NR =ω
mrg
TEOBResum

ranges
from 1.06 (Γ2164) to 1.17 (H4). For Amrg

22 , the ratio
Amrg
22NR=A

mrg
22TEOBResum

ranges from 1.05 (Γ2151) to 1.15 (2B)
(see also Fig. 3). Finally, after alignment, the difference
Δtmrg ¼ tTEOBResum

mrg − tNRmrg between EOB and NR merger
times is only ∼ð−30M;−8M;−9M; þ 34M; þ 51M;
þ 92MÞ for the sixmodels. Such agreements are remarkable,
as no NR tuning of the EOB waveform was performed.

FIG. 3 (color online). Phasing and amplitude comparison (versus NR retarded time) between TEOBResum, NR, and the phasing of TT4 for
three representativemodels.Waves are aligned on a timewindow (vertical dot-dashed lines) corresponding to Iω ≈ ð0.04; 0.06Þ. Themarkers in
the bottom panels indicate the crossing of the TEOBResum LSO radius, NR (also with a dashed vertical line), and EOB merger moments.

FIG. 4 (color online). Phasing comparison of various
analytical models and with NR data using the gauge-invariant
quantity Qω ≡ ω2= _ω.
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• Precision modeling over many orbits, see also            
Hinderer+ (2016), Dietrich+ (2017), Kiuchi+ (2017)

• Open issues: spin, last GW cycles before merger
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and dashed curves denote the cases with ⌘ = 0.25 and
0.244, respectively. The black curves denote the results
for (Mc/(1/4)3/5, ⇤̃) = (2.7M�, 0) in which analysis the
tides are not considered (note that the tides are consid-
ered in the analysis for the ⇤̃ = 0 cases for which the
results are shown with blue, green and light-blue curves
in Fig. 9).

The top panel in Fig. 9 shows that the statistical error
in the measurement of Mc depends only weakly on the
upper-bound frequency of the analysis for fmax & 400Hz.
The improvement of the statistical error by changing
fmax from 400Hz to 1000Hz is only ⇡ 25%. Figure 9
also shows that the statistical error becomes smaller for
smaller values of Mc, and depends only very weakly on
⌘ and ⇤̃. The bottom panel in Fig. 9 shows that the
statistical error in the measurement of ⌘ depends more
strongly on the upper-bound frequency than that of Mc.
The statistical error is reduced by ⇡ 40% by changing
fmax from 400Hz to 1000Hz. On the other hand, the
statistical error of ⌘ depends only very weakly on the bi-
nary parameters, such as Mc, ⌘, and ⇤̃. The results of
the analysis without tides show that, if tides are consid-
ered, the statistical error of Mc increases by ⇡ 25–40%,
and that of ⌘ by a factor of 2. These results are consistent
with those found in Ref. [12].

Figure 10 shows the statistical error in the measure-
ment of ⇤̃. The top panel of Fig. 10 shows that the
statistical error of ⇤̃ is significantly reduced if the upper-
bound frequency is increased. The statistical error de-
creases approximately in proportion to 1/f2

max. On the
other hand, the statistical error depends only weakly on
Mc and ⌘. This dependence on fmax and ⌘ is consistent
with Eq. (23) in Ref. [10]. The bottom panel of Fig. 10
shows the statistical error of ⇤̃ as a function of ⇤̃ for
the case fmax = 1000Hz. This indicates that the sta-
tistical error of ⇤̃ does not depend strongly on ⇤̃, and
it is always 110–170 for the case that the signal-to-noise
ratio is 50 and fmax = 1000Hz. Thus, the systematic er-
ror in our waveform model is likely to be always smaller
than the statistical error unless the signal-to-noise ra-
tio is larger than ⇠ 300. We note that the statistical
error of ⇤̃ shown in Fig. 10 is slightly larger than that
obtained in Refs. [12, 19]. This is because these works
employ higher upper-bound frequency than in Fig. 10:
The upper-bound frequency is set to be the frequency of
the innermost-stable-circular orbit (f ⇡1500–1800Hz) or
the frequency at the contact of neutron stars (f ⇡1200–
1800Hz) in Refs. [12, 19]. Indeed, we obtain the val-
ues consistent with Refs. [12, 19] if we employ the same
upper-bound frequency as in Refs. [12, 19]. However, we
restrict our model to < 1000Hz because our model is
calibrated only up to 1000Hz (see Appendix B.)

We neglected the e↵ects of the neutron-star spins on
the waveforms in this work. We note that if we take
into account the e↵ect of neutron-star spins, the sta-
tistical error would increase [3, 12]. For currently ob-
served values of spin parameters in Galactic binary pul-
sars [3, 53, 54], we may incorporate the spin e↵ects in
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FIG. 10. (Top panel) The same as Fig. 9 but for ⇤̃. (Bottom
panel) The statistical error in the measurement of ⇤̃ as a
function of ⇤̃. The upper-bound frequency is set to be 1000Hz
and the signal-to-noise ratio is set to be 50.

our waveform model by adding PN correction to the for-
mula: ⇡ 0.03 is the largest dimensionless-spin parameter
observed in the binary neutron star systems which will
merge in the Hubble time [3, 53, 54] assuming 1.35M�
and 2 ⇥ 1045 g cm2 [55] for the mass and the moment
of inertia of the neutron star, respectively. Up to such
magnitude of the neutron-star spin, employing the spin
correction up to the 3.5 PN order (including the 2 PN
quadratic spin correction) [38, 56, 57] may be su�cient
to describe the e↵ects of the spins in the level of our
model uncertainty, if the spin contribution to the tidal
e↵ects is negligible. Indeed, employing the SEOBNRv2
waveforms, we found that the error induced by neglect-
ing the higher-order PN spin correction would be only
at most comparable to the fitting error of our waveform
model for the case that the dimensionless spin parameter

From Kawaguchi, Kiuchi+ (2017)



low-spin case and (1.0, 0.7) in the high-spin case. Further
analysis is required to establish the uncertainties of these
tighter bounds, and a detailed studyof systematics is a subject
of ongoing work.
Preliminary comparisons with waveform models under

development [171,173–177] also suggest the post-
Newtonian model used will systematically overestimate
the value of the tidal deformabilities. Therefore, based on
our current understanding of the physics of neutron stars,
we consider the post-Newtonian results presented in this
Letter to be conservative upper limits on tidal deform-
ability. Refinements should be possible as our knowledge
and models improve.

V. IMPLICATIONS

A. Astrophysical rate

Our analyses identified GW170817 as the only BNS-
mass signal detected in O2 with a false alarm rate below
1=100 yr. Using a method derived from [27,178,179], and
assuming that the mass distribution of the components of
BNS systems is flat between 1 and 2 M⊙ and their
dimensionless spins are below 0.4, we are able to infer
the local coalescence rate density R of BNS systems.
Incorporating the upper limit of 12600 Gpc−3 yr−1 from O1
as a prior, R ¼ 1540þ3200

−1220 Gpc−3 yr−1. Our findings are

consistent with the rate inferred from observations of
galactic BNS systems [19,20,155,180].
From this inferred rate, the stochastic background of

gravitational wave s produced by unresolved BNS mergers
throughout the history of the Universe should be compa-
rable in magnitude to the stochastic background produced
by BBH mergers [181,182]. As the advanced detector
network improves in sensitivity in the coming years, the
total stochastic background from BNS and BBH mergers
should be detectable [183].

B. Remnant

Binary neutron star mergers may result in a short- or long-
lived neutron star remnant that could emit gravitational
waves following the merger [184–190]. The ringdown of
a black hole formed after the coalescence could also produce
gravitational waves, at frequencies around 6 kHz, but the
reduced interferometer response at high frequencies makes
their observation unfeasible. Consequently, searches have
been made for short (tens of ms) and intermediate duration
(≤ 500 s) gravitational-wave signals from a neutron star
remnant at frequencies up to 4 kHz [75,191,192]. For the
latter, the data examined start at the time of the coalescence
and extend to the end of the observing run on August 25,
2017. With the time scales and methods considered so far
[193], there is no evidence of a postmerger signal of

FIG. 5. Probability density for the tidal deformability parameters of the high and low mass components inferred from the detected
signals using the post-Newtonian model. Contours enclosing 90% and 50% of the probability density are overlaid (dashed lines). The
diagonal dashed line indicates the Λ1 ¼ Λ2 boundary. The Λ1 and Λ2 parameters characterize the size of the tidally induced mass
deformations of each star and are proportional tok2ðR=mÞ5. Constraints are shown for the high-spin scenario jχj ≤ 0.89 (left panel) and
for the low-spin jχj ≤ 0.05 (right panel). As a comparison, we plot predictions for tidal deformability given by a set of representative
equations of state [156–160] (shaded filled regions), with labels following [161], all of which support stars of 2.01M⊙. Under the
assumption that both components are neutron stars, we apply the function ΛðmÞ prescribed by that equation of state to the 90% most
probable region of the component mass posterior distributions shown in Fig. 4. EOS that produce less compact stars, such as MS1 and
MS1b, predict Λ values outside our 90% contour.
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Prompt-BH formation



Simulation results

(1.44 + 1.39) M⊙ — B1913 + 13 

DR, Perego, Zappa, ApJL 852:L29 (2018)



Simulation results

(1.44 + 1.39) M⊙ — B1913 + 13 

DR, Perego, Zappa, ApJL 852:L29 (2018)



EOS constraints (I)

4 Bauswein et al.

Figure 1 (right panel) displays Mthres(Mmax; Rmax)
for di↵erent chosen Rmax (solid lines). The di↵erent
sequences for fixed Rmax are constrained by causality
(Koranda et al. 1997; Lattimer & Prakash 2016) requir-
ing

Mmax  1

2.82

c2Rmax

G
(5)

and with Eq. (3)

Mthres � 1.23 Mmax. (6)

The lower bound of Mthres given by the measured total
mass of GW170817 is shown as dark blue band. The
radius Rmax of the nonrotating maximum-mass NS is
thus constrained to be larger than 9.26+0.17

�0.03 km.
Instead of using Eq. (1) it may be more realistic to

assume that the remnant was stable for at least 10 mil-
liseconds to yield the observed ejecta properties (high
masses, blue component) (Margalit & Metzger 2017;
Nicholl et al. 2017; Cowperthwaite et al. 2017). In this
case our numerical simulations suggest that Mthres �
Mtot � 0.1 M�. This strengthens the radius constrainst
to R1.6 � 10.68+0.15

�0.04 km and Rmax � 9.60+0.14
�0.03 km.

Figure 2 shows these radius constraints overlaid on
mass-radius relations of di↵erent EoSs available in the
literature. Our new radius constraints for R1.6 and Rmax

derived from GW170817 exclude EoS models describing
very soft nuclear matter.
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Figure 2. Mass-radius relations of di↵erent EoSs with
very conservative (red area) and “realistic” (cyan area) con-
straints of this work for R1.6 and Rmax. Horizontal lines
display the lower bound on Mmax by Antoniadis & et al.
(2013). The dashed line shows the causality limit.

3.3. Discussion: robustness and errors

We took an overall conservative approach in this first
study. Future refinements may strengthen these con-
straints. Our way of inferring NS radii is particularly
appealing and robust because it only relies on (1) a
well measured quantity (total binary mass with reli-
able error bars), (2) a single verifiable empirical relation
(Eqs. (2) or (3)) derived from simulations, and (3) a
clearly defined working hypothesis (delayed/no collapse
of the merger remnant). All assumptions can be fur-
ther substantiated and refined by more advanced models
and future observations, and error bars can be robustly
quantified.

(1) Mass measurement: The total binary mass can
be measured with good accuracy and the error bars are
given with high confidence. We fully propagate the error
through our analysis using the the low-spin prior results
of Abbott et al. (2017). If GW170817 was an asymmet-
ric merger as tentatively suggested by the high ejecta
mass, the true Mtot lies at the upper bound of the error
band and our radius constraints become stronger.

(2) Accuracy of empirical relations for Mthres: The
empirical relations (Eqs. (2) and (3)) are inferred from
hydrodynamical simulations (see Bauswein et al. (2013a,
2016); Bauswein & Stergioulas (2017)) and carry a sys-
tematic error1 and an intrinsic scatter (stemming from
the sample of candidate EoSs, which do not perfectly
fulfill the analytic fit). Mthres has been numerically de-
termined with a precision of ±0.05 M�. The deviations
between the fits and numerical data are on average less
than 0.03 M� and at most 0.075 M�

2. We do not in-
clude this uncertainty in our error analysis because the
numerically determined Mthres of all tested microphysi-
cal candidate EoSs is significantly smaller than the max-
imum of the Mthres(Mmax) sequence for the radius given
by the respective EoS3. Recall that the maxima of the

1 The simulations for determining Mthres and the corresponding
fits employ a conformally flat spatial metric in combination with
a GW backreaction scheme (Oechslin et al. 2007; Bauswein et al.
2013a), which results in a slightly decelerated inspiral (compared
to fully relativistic calculations) and thus leads to a slight over-
estimation of Mthres by ⇠ 0.05 M�. We will quantify this e↵ect
in future work and emphasize that a small overestimation implies
that our radius constraints are conservative.

2 We computed Mthres for six additional EoSs not included
in Bauswein et al. (2013a) to verify this accuracy in particular for
EoS models yielding relatively small NS radii.

3 Within our sample of 17 candidate EoSs the true Mthres

is on average 0.17 M� (0.14 M� for the Rmax sequence) be-
low the maximum Mup

thres of the Mthres(Mmax, R) relation, which
well justifies to neglect the scatter in Eqs. (2) and (3). Three
EoSs (eosAU, WFF1, LS375) are relatively close to the maximum
(⇠ 0.02 M� below Mup

thres). However, these EoS models become
acausal (vsound > c), i.e. unrealistically sti↵, at densities of high-

From Bauswein, Just+ (2017)
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Hypermassive NSs
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Postmerger peak frequency

• Post-merger signal has a characteristic peak frequency
• fpeak correlates with the NS radius
• Small statistical uncertainty, systematics not understood yet

for the postmerger phase, which could enhance the detec-
tion prospects compared to unmodeled searches [40,41] for
the Advanced LIGO and Advanced Virgo detectors and
their discussed upgrades [42–44]. For the planned Einstein
Telescope [45], direct detections of secondary peaks are a
viable prospect [36,37,40,41].

II. NATURE OF SECONDARY GW PEAKS

We investigate mergers of equal-mass, intrinsically non-
spinning NSs with a 3D relativistic smoothed particle
hydrodynamics (SPH) code, which imposes the conformal
flatness condition on the spatial metric [46,47] to solve
Einstein’s field equations and incorporates energy and
angular momentum losses by a GW backreaction scheme
[18,48] (see Refs. [12,18,28,29,49] for details on the code,
the setup, resolution tests and model uncertainties).
Comparisons to other numerical setups and also models
with an approximate consideration of neutrino effects
show an agreement in determining the postmerger spectrum
within a few percent in the peak frequencies [27–29,33,
36–38]. Magnetic field effects are negligible for not-too-
high initial field strengths [24]. We explore a representative
sample of ten microphysical, fully temperature-dependent
equations of state (EOSs) (see Table I in Ref. [39] and
Fig. 5 in this work for the mass-radius relations of non-
rotating NSs of these EOSs) and consider total binary
massesMtot between 2.4 M⊙ and 3.0 M⊙. In this work we
consider only NSs with an initially irrotational velocity
profile, because known spin periods in observed NS
binaries are slow compared to their orbital motion (see
e.g. Ref. [50]), and simulations with initial intrinsic NS spin
suggest an impact on the postmerger features of the GW
signal only for very fast spins [19,35,38].
First, we focus on a reference model for the moderately

stiff DD2 EOS [51,52] with an intermediate binary mass of
Mtot ¼ 2.7 M⊙. Figure 1 shows the x-polarization of the
effective amplitude heff;x ¼ ~hxðfÞ · f (with ~hx being the
Fourier transform of the waveform hx) vs frequency f
(reference model in black). Besides the dominant fpeak
frequency [53], there are two secondary peaks at lower
frequencies (f2−0 and fspiral) with comparable signal-to-
noise ratio. Both are generated in the postmerger phase,
which can be seen by choosing a time window covering
only the postmerger phase for computing the GW
spectrum.
The secondary peak shown as f2−0 is a nonlinear

combination frequency between the dominant quadrupolar
fpeak oscillation and the quasiradial oscillation of the
remnant, as described in Ref. [25]. We confirm this by
performing additional simulations, after adding a quasir-
adial density perturbation to the remnant at late times. The
frequency f0 of the strongly excited quasiradial oscillation
is determined by a Fourier analysis of the time evolution of
the density or central lapse function and coincides with the

frequency difference fpeak − f2−0. As in Ref. [25], the
extracted eigenfunction at f0 confirms the quasiradial
nature.
The secondary fspiral peak is produced by a strong

deformation initiated at the time of merging, the pattern
of which then rotates (in the inertial frame) slower than the
inner remnant and lasts for a few rotational periods, while
diminishing in amplitude. Figure 2 shows the density
evolution in the equatorial plane, in which one can clearly
identify the two antipodal bulges of the spiral pattern,
which rotate slower than the central parts of the remnant. In
this early phase the inner remnant is still composed of two
dense cores rotating around each other (this is the nonlinear
generalization of an m ¼ 2 quadrupole oscillation produc-
ing the dominant fpeak). Extracting the rotational motion of
the antipodal bulges in our simulations, we indeed find that
their frequency equals fspiral=2 producing gravitational
waves at fspiral (compare the times in the right panels in
Fig. 2; recall the factor 2 in the frequency of the GW signal
compared to the orbital frequency of orbiting point par-
ticles). In Fig. 2 the antipodal bulges are illustrated by
selected fluid elements (tracers), which are shown as black
and white dots, while the positions of the individual centers
of the double cores are marked by a cross and a circle. (We
define the centers of mass of the double cores by computing
the centers of mass of the innermost 1000 SPH particles of
the respective initial NSs and then following their time
evolution.) While in the right panels the antipodal bulges
completed approximately one orbit within one millisecond
(≈ 2

fspiral
), the double cores moved further ahead, i.e. with a

significantly higher orbital frequency. Examining the GW
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FIG. 1 (color online). GW spectra of 1.35–1.35 M⊙ mergers
with the DD2 [51,52] (black), NL3 [51,54] (blue) and LS220 [55]
(red) EOSs (cross polarization along the polar axis at a reference
distance of 20 Mpc). Dashed lines show the anticipated unity
SNR sensitivity curves of Advanced LIGO [1] (red) and of the
Einstein Telescope [45] (black).
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gular momentum, however, is given by the dynamics
of the late inspiral/merging phase, which is fully deter-
mined by the stellar structure of the inspiralling stars and
thus also depends on the EoS in a particular way. The
strong EoS dependence of the peak frequency can be ex-
pressed as follows. An EoS which is used in a given sim-
ulation, can be conveniently characterized by the radii
of nonrotating NSs, which are uniquely determined by
this EoS through the stellar structure equations (Tolman-
Oppenheimer-Volkoff equations [89,90]). Specifically, for a
set of calculations with a fixed total binary mass but differ-
ent EoSs2, we relate the peak frequency, which is extracted
from a simulation with a given EoS, to the radius of a
nonrotating NS (described by the same EoS) with a fixed
fiducial mass. A natural choice is to employ the NS radius
for a mass of MNS = Mtot/2, which for symmetric binaries
is just the radius of the inspiralling NSs (more precisely, at
infinite orbital separation). In this case a clear correlation
is found, where EoSs leading to more compact NSs yield
higher postmerger GW frequencies (see fig. 12 in [6], which
shows this relation for Mtot = 2.7M⊙). (Alternatively, one
can use the compactness C = GMNS/(c2R(MNS)) of fidu-
cial nonrotating NS models, which is equivalent to em-
ploying the radius R(MNS).)

The empirical relation between fpeak and R(MNS) is
very tight, which implies that a measurement of the peak
frequency can be used to determine the unknown radius

2 Except for some models considered in sect. 4, the EoSs
discussed in this study are temperature dependent and include
electrons, positrons and photons, while neutrino contributions
are neglected. With regard to the resulting stellar properties
these EoSs cover a representative range, which, for example,
can be seen from the range of radii in fig. 3 and maximum
masses in fig. 8.

of a nonrotating NS with a fixed mass by simply invert-
ing the empirical relation [6,19]. Thus, a future detection
of the GW postmerger phase and extraction of the peak
frequency (see [17,18]) will yield strong constraints on the
high-density EoSs. In [6, 19] the largest deviation of the
empirical data from a fit is only a few hundred meters.
The accuracy of a radius determination by the postmerger
GW signal is mostly affected by two sources of error. One
error is the uncertainty of the measurement of the peak
frequency. Apart from this, one should take into account
deviations between the data and the fit to the data de-
scribing the empirical relation. A measurement of the peak
frequency (of the true EoS) does not reveal in which way
the measured frequency slightly deviates from the empiri-
cal relation. Hence, one conservatively has to assume that
the true data point may deviate as much as the largest
deviation found in the large sample of candidate EoSs.

The peak frequency has been shown to be measurable
with very high precision by a coherent burst search anal-
ysis [17]. In this study waveforms from numerical models
were superimposed with the recorded data stream of pre-
vious GW detector science runs, which simulates the noise
of the future instruments. The model waveforms were in-
jected at random times and the noise was rescaled to the
anticipated sensitivity of the second-generation GW detec-
tors Advanced LIGO and Virgo. The existing GW data
analysis pipeline was able to recover the injected signal
and to determine the peak frequency with an accuracy of
∼ 10Hz, which is smaller than the spread in the empiri-
cal relation between fpeak and the NS radius. This implies
that the radii of the inspiralling stars can be determined
with a precision of a few hundred meters.

These considerations show that the larger contribu-
tion to the error of a radius measurement originates from
the scatter in the empirical relation between fpeak and
R(MNS). In this context, the following observation is im-
portant. One has the freedom to choose any fiducial NS
mass different from MNS = Mtot/2 for characterizing
a given EoS by the TOV radius R(MNS). Empirically,
it turns out that using a fiducial NS mass somewhat
larger than MNS = Mtot/2 leads to tighter relations be-
tween fpeak and R(MNS). This is exemplified in fig. 3. For
Mtot = 2.7M⊙ (circles in fig. 3) the maximum deviation
between the data and a fit amounts to only ∼ 175 me-
ters if MNS = 1.6M⊙ is chosen. This implies that the
measurement of the dominant postmerger frequency for
Mtot = 2.7M⊙ determines the radius of a nonrotating
1.6M⊙ NS with an accuracy of better than 200 meters.

It is natural that a fiducial mass of MNS = 1.6M⊙
is somewhat more appropriate than MNS = 1.35M⊙ for
characterizing the postmerger oscillations of 1.35-1.35M⊙
mergers (Mtot = 2.7M⊙). The maximum densities in
the massive, rotating merger remnant are higher than in
the initial NSs and they are comparable to the central
densities of nonrotating, static NSs with a mass of roughly
1.6M⊙ (see, e.g., fig. 15 in [6]). For this reason, nonrotat-
ing NSs with MNS > Mtot/2 better represent the density
regime encountered in the merger remnant and thus pro-
vide a better description of the EoS.

From Bauswein+ 2016

See also Takami+ 2014; Rezzolla & Takami 2016; Dietrich+ 2016; Bose+ 2017



Extreme-density physics
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• Neutron stars in binaries have 
masses clustered around ~1.35 M

• Phase transition at high-density not 
constrained by the inspiral 

• Can we probe the equation of state 
of nuclear matter at the highest 
densities?

• Yes, with the postmerger signal

See also Bauswein+ 2011, 2013, 2015, Read+ 2013, 
Hotokezaka+ 2013, Takami+ 2014, Bernuzzi+ 2015, 
Clark+ 2014, 2016, Bose+ 2017, Chatziioannou 2017, …



Gravitational waveform
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End of GW-driven phase

Zappa, Bernuzzi, DR+, PRL in press (2018)



Viscous evolution to collapse



Angular momentum transport

DR ApJL:838 L2 (2017)See also: Shibata & Kiuchi 2017; Kiuchi, Kyotoku+ 2017

tvisc ⇠ 15mstvisc = 1



Angular momentum transport

DR ApJL:838 L2 (2017)See also: Shibata & Kiuchi 2017; Kiuchi, Kyotoku+ 2017

tvisc ⇠ 15mstvisc = 1



Angular momentum transport

Delayed collapse!

DR ApJL:838 L2 (2017)See also: Shibata & Kiuchi 2017; Kiuchi, Kyotoku+ 2017

tvisc ⇠ 15mstvisc = 1
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See also: Shibata & Kiuchi 2017; Kiuchi, Kyotoku+ 2017 DR ApJL:838 L2 (2017)
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• How large is the turbulent viscosity?
• How do hypermassive NS evolve over many 

viscous timescales?
• Can we distinguish long- and short-lived 

hypermassive NSs?

DR ApJL:838 L2 (2017)



Viscous evolution to equilibrium



Long-lived remnants
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Viscous evolution
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Excess gravitational mass
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Figure 5. Baryonic mass Mb as a function of maximum baryon density ρb,max of uniformly rotating (Ã = 0) equilibrium models at the mass-shedding limit for
different temperature prescriptions (solid lines). We also plot the corresponding TOV sequences (dashed lines) and show results for the LS220 EOS (left panel) and
HShen EOS (right panel). There is a large thermal enhancement of Mb at low densities, but the sequences converge toward the cold supramassive limit as the maximum
density increases and the configurations become more compact.
(A color version of this figure is available in the online journal.)

Table 2
Uniformly Rotating Neutron Stars at the Supramassive Limit

Model ρb,max Mmax
b Mmax

g re rp/e Ω T/|W |
(1015 g cm−3) (M⊙) (M⊙) (km) (103 rad s−1)

LS220 cold 1.653 2.823 2.419 14.429 0.566 10.096 0.118
LS220 c20p0 1.652 2.760 2.384 14.788 0.574 9.647 0.106
LS220 c30p0 1.652 2.737 2.382 15.000 0.576 9.441 0.103
LS220 c30p5 1.710 2.671 2.322 15.300 0.587 9.031 0.088
LS220 c30p10 1.769 2.587 2.247 16.130 0.599 8.215 0.066
LS220 c40p0 1.625 2.717 2.383 15.201 0.577 9.262 0.101

HShen cold 1.220 3.046 2.649 17.101 0.564 8.233 0.117
HShen c20p0 1.196 3.006 2.629 17.760 0.573 7.745 0.105
HShen c30p0 1.171 3.009 2.648 18.173 0.574 7.511 0.103
HShen c30p5 1.228 2.916 2.564 18.665 0.588 7.086 0.084
HShen c30p10 1.261 2.808 2.467 20.070 0.604 6.238 0.060
HShen c40p0 1.139 3.012 2.664 18.474 0.574 7.355 0.101

Notes. Summary of mass-shedding uniformly rotating supramassive neutron star configurations at the maximum mass for each EOS and temperature
prescription. These models are in ν-less β-equilibrium (see Section 2.2). ρb,max is the central density of the model with the maximum baryonic mass Mmax

b .
Mmax

g is the gravitational mass at the ρb,max at which Mmax
b occurs. re is the equatorial radius, rp/e is the axis ratio, Ω is the angular velocity, and T/|W | is the

ratio of rotating kinetic energy T to gravitational energy |W |.

case, the mean density ρ̄b of the NSs increases and less material
is experiencing enhanced pressure support due to high temper-
atures in the cXp0 models. Hence, these models move toward
the Mmax

b of the cold supramassive limit (see the inset plots in
Figure 5). For both EOS, the Mmax

b of hot configurations are all
lower than the cold value. The cXp0 models reach supramassive
limits that are within less than 2% of the cold supramassive limit
for both EOS. The c30p10 and c30p5 models, on the other hand,
have Mmax

b that are ∼5%–10% lower than the cold supramassive
limit for both EOS. Table 2 summarizes key parameters of the
hot and cold configurations at the supramassive limit.

The systematics of the supramassive limit with temperature
prescription becomes clear when considering Figure 6. This
figure shows the baryonic mass Mb and gravitational mass Mg
for uniformly rotating NSs as a function of angular velocity Ω for
the LS220 and HShen EOS at fixed densities near the maximum
of Mb(ρb,max) (see Table 2). At fixed angular velocity below
mass shedding, hotter configurations always yield higher Mg

than their colder counterparts. For the LS220 EOS, as in the TOV
case discussed in the previous section 3, hotter configurations
have lower Mb. In the case of the HShen EOS, which generally
yields less compact equilibrium models, the opposite is true, but
the increase in Mb caused by thermal support is smaller than the
increase in Mg.

With increasing Ω, the mass-shedding limit is approached and
hotter configurations systematically reach the mass shedding
limit at lower angular velocities. The reason for this is best
illustrated by comparing c30p0 models with c30p10 and c30p5
models, which have a high-temperature plateau at low densities
of 10 MeV and 5 MeV, respectively. At low angular velocities,
all c30pX models show the same thermal increase in Mg.
However, the high pressure at low densities in the c30p10 and
c30p5 models leads to significantly larger radii compared to
the model without temperature plateau. Consequently, as Ω
is increased, the configurations with plateau reach the mass-
shedding limit at lower Ω. For the LS220 EOS, the c30p10

9

From Kaplan, Ott, O’Connor+ (2014)
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ratio of rotating kinetic energy T to gravitational energy |W |.

case, the mean density ρ̄b of the NSs increases and less material
is experiencing enhanced pressure support due to high temper-
atures in the cXp0 models. Hence, these models move toward
the Mmax

b of the cold supramassive limit (see the inset plots in
Figure 5). For both EOS, the Mmax

b of hot configurations are all
lower than the cold value. The cXp0 models reach supramassive
limits that are within less than 2% of the cold supramassive limit
for both EOS. The c30p10 and c30p5 models, on the other hand,
have Mmax

b that are ∼5%–10% lower than the cold supramassive
limit for both EOS. Table 2 summarizes key parameters of the
hot and cold configurations at the supramassive limit.

The systematics of the supramassive limit with temperature
prescription becomes clear when considering Figure 6. This
figure shows the baryonic mass Mb and gravitational mass Mg
for uniformly rotating NSs as a function of angular velocity Ω for
the LS220 and HShen EOS at fixed densities near the maximum
of Mb(ρb,max) (see Table 2). At fixed angular velocity below
mass shedding, hotter configurations always yield higher Mg

than their colder counterparts. For the LS220 EOS, as in the TOV
case discussed in the previous section 3, hotter configurations
have lower Mb. In the case of the HShen EOS, which generally
yields less compact equilibrium models, the opposite is true, but
the increase in Mb caused by thermal support is smaller than the
increase in Mg.

With increasing Ω, the mass-shedding limit is approached and
hotter configurations systematically reach the mass shedding
limit at lower angular velocities. The reason for this is best
illustrated by comparing c30p0 models with c30p10 and c30p5
models, which have a high-temperature plateau at low densities
of 10 MeV and 5 MeV, respectively. At low angular velocities,
all c30pX models show the same thermal increase in Mg.
However, the high pressure at low densities in the c30p10 and
c30p5 models leads to significantly larger radii compared to
the model without temperature plateau. Consequently, as Ω
is increased, the configurations with plateau reach the mass-
shedding limit at lower Ω. For the LS220 EOS, the c30p10
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The remnant of GW170817
2

Fig. 1.— The strength of the red and blue KN signatures of a BNS merger depends on the compact remnant which forms immediately
after the merger; the latter in turn depends on the total mass of the original binary or its remnant, Mtot, relative to the maximum NS
mass, Mmax. A massive binary (Mtot & 1.3� 1.6Mmax) results in a prompt collapse to a BH; in such cases, the polar shock-heated ejecta
is negligible and the accretion disk outflows are weakly irradiated by neutrinos, resulting in a primarily red KN powered by the tidal ejecta
(left panel). By contrast, a very low mass binary Mtot . 1.2Mmax creates a long-lived SMNS, which imparts its large rotational energy
& 1052 erg to the surrounding ejecta, imparting relativistic expansion speeds to the KN ejecta or producing an abnormally powerful GRB
jet (right panel). In the intermediate case, 1.2Mmax . Mtot . 1.3 � 1.6Mmax a HMNS or short-lived SMNS forms, which produces both
blue and red KN ejecta expanding at mildly relativistic velocities, consistent with observations of GW170817.

ral (Hinderer et al. 2010; Damour & Nagar 2010; Damour
et al. 2012; Favata 2014; Read et al. 2013; Del Pozzo
et al. 2013; Agathos et al. 2015; Lackey & Wade 2015;
Chatziioannou et al. 2015) and for quasi-periodic oscilla-
tions of the post-merger remnant (e.g. Bauswein & Janka
2012; Bauswein et al. 2012; Clark et al. 2014; Bauswein
& Stergioulas 2015; Bauswein et al. 2016). Searches on
timescales of tens of ms to . 500 s post-merger revealed
no evidence for such quasi-periodic oscillations in the
GW170817(LIGO Scientific Collaboration & Virgo Col-
laboration 2017).
While the radii of NS are controlled by the properties of

the EOS near and below nuclear saturation density, the
maximum stable mass, Mmax, instead depends on the
very high density EOS. Observations of two pulsars with
gravitational masses of 1.93 ± 0.07M� (Demorest et al.
2010; Özel & Freire 2016) or 2.01± 0.04M� (Antoniadis
et al. 2013) place the best current lower bounds . How-
ever, other than the relatively unconstraining limit set
by causality, no firm theoretical or observational upper
limits exist on Mmax. Indirect, assumption-dependent
limits on Mmax exist from observations of short GRBs
(e.g. Lasky et al. 2014; Lawrence et al. 2015; Fryer et al.
2015; Piro et al. 2017) and by modeling the mass distri-
bution of NSs (e.g. Alsing et al. 2017).
Despite the large uncertainties on Mmax, it remains

one of the most important properties a↵ecting the out-
come of a BNS merger and its subsequent EM signal
(Fig. 1). If the total binary mass Mtot exceeds a criti-
cal threshold of Mth ⇡ kMmax, then the merger prod-
uct undergoes “prompt” dynamical-timescale collapse
to a black hole (BH) (e.g. Shibata 2005; Shibata &
Taniguchi 2006; Baiotti et al. 2008; Hotokezaka et al.

2011), where the proportionality factor k ⇡ 1.3 � 1.6
is greater for smaller values of the NS “compactness”,
Cmax = (GMmax/c2R1.6), where R1.6 is the radius of a
1.6M� NS (e.g. Bauswein et al. 2013). For slightly less
massive binaries with Mtot . Mth, the merger instead
produces a hyper-massive neutron star (HMNS), which
is supported from collapse by di↵erential rotation (and,
potentially, by thermal support). For lower values of
Mtot . 1.2Mmax, the merger instead produces a supra-
massive neutron star (SMNS), which remains stable even
once its di↵erential rotation is removed, as is expected to
occur . 10 � 100 ms following the merger (Baumgarte
et al. 2000; Paschalidis et al. 2012; Kaplan et al. 2014).
A SMNS can survive for several seconds, or potentially
much longer, until its rigid body angular momentum is
removed through comparatively slow processes, such as
magnetic spin-down. Finally, for an extremely low binary
mass, Mtot . Mmax, the BNS merger produces an indef-
initely stable NS remnant (e.g. Bucciantini et al. 2012;
Giacomazzo & Perna 2013). Figure 2 shows the baryonic
mass thresholds of these possible BNS merger outcomes
(prompt collapse, HMNS, SMNS, stable) for an example
EOS as vertical dashed lines.
The di↵erent types of merger outcomes are predicted to

create qualitatively di↵erent electromagnetic (EM) sig-
nals (e.g. Bauswein et al. 2013; Metzger & Fernández
2014). In this Letter, we combine EM constraints on
the type of remnant that formed in GW170817 with GW
data on the binary mass in order to constrain the radii
and maximum mass of NSs.

2. CONSTRAINTS FROM EM COUNTERPARTS

This section reviews what constraints can be placed
from EM observations on the energy imparted by a long-

From Margalit & Metzger 2017

Long-lived SMNS unlikely —> limit on the maximum NS mass

See also Rezzolla+, Shibata+, Ruiz+ (2017)  



The origin of the elements

R-Process

Are neutron star mergers the site of the r-process?
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See also Metzger+2008; Wanajo+2014;
Fernandez+2014; Metzger+2014; Perego+2014;
Martin+2015; Sekiguchi+2015,2016; Foucart+2016; Siegel+2017



Dynamic ejecta: role of neutrinos

Perego, DR, Bernuzzi, ApJL:850 L37
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Dynamic ejecta: role of neutrinos
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Conclusions

• Numerical relativity is essential in the age of 
multimessenger astronomy

• Do we really understand the outcome of NS mergers?

• Neutrinos play a crucial role for nucleosynthesis and 
EM counterparts



Thank you!


