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Orbital eccentricity 

Spin-orbit alignment 
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Kramer+, arXiv:astro-ph/0609417 
Ferdman+, arxiv:1406.5507 
Stairs+, arxiv:astro-ph/0609416 
Piran+, arXiv:astro-ph/0409651 
Ferdman+,arxiv:1302.2914 
Iacolina+, arxiv:1512.03241 
Andrews+, arxiv:1410.6797 

Properties of certain double neutron star systems suggest 
secondary neutron star was born in a symmetric, possible 
sub-energetic supernova 



Electron-Capture	Supernova	(ECSN)	Hypothesis	

≈1.37-1.38	MSUN	ONeMg	Core	becomes	Unstable	to	e-capture	onto	
20Ne,24Mg	(Miyaji+,	PASJ,	32,	303;1980,Nomoto,	ApJ,	322,206;	1987)		
τcaptures	>	τgrowth,	freezing		ONeMg	core	mass	
Contrac-on,	hea-ng	triggers	O+Ne	burning,	material	processed	to	NSE	
as	a	deflagra-on	front	moves	out	
Con-nuing	e-capture	onto	Fe	group	accelerates	collapse	



Electron-Capture	Supernovae	(ECSN)	Hypothesis	

Mayle,Wilson,	ApJ	334,909;	1988	
Kitaura+,	arXiv:astro-ph/0512065	
Wanajo+,arxiv:1009.1000	
Takahashi+,	arxiv:1302.6402	

Steep	density	gradient	at	core	boundary		
leads	to	delayed	explosion	on	short	-mescales,	
(no	-me	for	instability	growth),	clean	mass	
cut	(v.	small	mass	loss	from	core)	
	
	
In	2D:	Shock	has	escaped	before	convec-on	gets	going	in	PNS	

Janka+,arxiv:0712.4237	

	>	Small	disturbance	to	binary		



Kitaura+,	arxiv:astro-ph/0512065,			Janka+,	arxiv:0712.4237	

Star	explodes	with	v.	liile	mass	loss	from	core:	~	10-2	Msun	

Electron-Capture	Supernovae	(ECSN)	Hypothesis	



A small fraction (<5% of 
all CCSN) of single super-
AGB stars may go ECSN 

Binary interactions  
enhance ECSN rate (up 
to 30% of all CC SNe)  
and lead to DNS  
systems 

Top right picture: Lionel Seiss 
Doherty+, arxiv 1410.5431 
Takahashi+, arxiv:1302.6402 
Podsiadlowski + arXiv:astro-ph/0506566 



Double	NS	via	ECSN:	final	stage:	

Ph. Podsiadlowski et al MNRAS 361, 1243 (2005) 

Account	for	some	type	Ib/c	Supernova?	
	
Bimodal	mass	distribu-on	of	neutron	star	masses:	low	mass	component	enhanced	by	ECSN?	
(Schwab+,	arXiv:1006.4584)	
	
Popula-on	synthesis	models	suggest	J0737-3039B	and	J1756-2251	formed	in	ECSN	
(Andrews+,	arxiv:1410.6797)	
	
Be/X-ray	binary	popula-on	is	bimodal	in	orbital	and	NS	spin	period	–	short	periods	indicate	
ECSN	origin	(Knigge+,	arXiv:1111.2051)	
	



Double	NS	via	ECSN:	final	stage:	

Ph. Podsiadlowski et al MNRAS 361, 1243 (2005) 

Why	is	this		
important?	

Popula-on	synthesis	models,	progenitors	of	SNe,	rates	of	produc-on	
of	low	mass	neutron	stars	and	neutron	star	binaries,	GW	searches	

Constraining	the	evolu-onary	history	of	specific	systems	and	SNe	(e.g.	
double	pulsar,	Crab)	



•  Astrophysical modelling: ONeMg core collapses at, e.g. 
          1.366 < M0 < 1.375 MSUN,   Podsiadlowski et al MNRAS 361, 1243 (2005) 

          1.358 < M0 < 1.362 MSUN    F.S. Kitaura, H.-Th. Janka, W. Hillebrandt, A&A 450, 345 (2006) 

     1.357 < M0 < 1.377 MSUN      Takahashi, 2013 
 
•  Very little mass lost during pulsar formation – so the above masses are  
estimates of the baryon mass of the pulsar 
 
•  We measure, for example, the gravitational mass of pulsar B 
 
           MG = 1.2489 ± 0.0007 MSUN 

•  The difference is the gravitational binding energy BE of the star 
 
            MB = MG + BE 
 
•  ..which correlates with the compactness M/R and the EOS 
•  Independent estimates of the binding energy can constrain the formation  
scenario 

Constraining	the	Neutron	Star	EOS	from	Binding	Energy	Es-mates	



Steiner,	Lapmer,	Brown,	arxiv:1510:07515	

Universal	Rela-ons:	I-Love-Q	(Yagi,Yunes)	

…+BE	



From contribution to periastron 
advance (Lense-Thirring 
precession) 
(Lattimer&Schutz, arxiv:astro-
ph/0411470; Kehl+, arxiv:
1605.00408) 

Pulsar A’s moment of inertia should be measurable to  
within 10% in the next decade from pulsar timing 

…and	a	10%	measurement	of	the	
Love	number	of	a	neutron	star	
from	a	merger	GW	signal	by		
advanced	LIGO	is	possible	



Already started constraining tidal polarizability! 

LSC/LIGO	



Read+,	arxiv:0812.2163	

EOS	Modeling	

SKYRME	(L)	

GCR	(L)	

Faioyev+	PRC86,	025804	(2012)	
Brown,	Schwenk,		
PRC89,	011307	(2014)	

Steiner+	ApJL	778	L23	(2013)	
Steiner+	PRC91,	015804	(2015)	

+	2	Polytropes	

+	3	Polytropes	(Model	A)	

+	4	line	segments	(Model	C)	
GCR:	parameteriza-on	of	PNM	
EOS;	L	=	30-70MeV	
(Gandolfi+,	PRC85,	032801,	2012)	
Polytropes	aiached	at	n0	
	
Skyrme:	Fit	to	PNM	EOS;		
L=20-80	MeV	
(+	L=120MeV)	
Polytropes	aiached	at	1.5n0	and	n0	



EOS	Modeling	

GCR	MODEL	A	

GCR	MODEL	C	

Newton,	Steiner,	Yagi;	ApJ	(in	produc-on)	arxiv:	1611.09399	



Results:	J0737-3039B	
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Conclusions	

Need	more	simula-ons	of	ONeMg	core	collapse!	(2D,3D)	and	USFeCC	
	Are	instabili-es	really	insignificant?	
	What’s	the	most	mass	that	can	be	ejected	from	the	core?	How	does	it	depend	on	EOS?	
	Does	it	actually	collapse?	What	factors	affect	it?	(Jones+,	arxiv:1602.05771	–	for	igni-on	
					densi-es	below	1010	g/cc,	deflagra-on	destroys	star)	

Viability	and	extent	of	ECSN	very	important	for	understanding	stellar	popula-ons,	especially	the		
	popula-on	of	DNS	binaries	

	
Current	progenitor	models	and	supernova	core	collapse	predict	ONeMg	cores	become	

	unstable	in	range	≈1.357	–	1.377	Msun	and	collapse	with	only	~0.01	Msun	escaping	
	
EOS	modeling	suggests	that	J0737-3039	and	J1756-2251	compa-ble	with	ECSN	hypothesis	

	if	EOS	is	moderately	soy/contains	strong	phase	transi-on	or	greater	mass	loss	than		
	predicted	

	
Measurements	of	Moment	of	Iner-a	to	within	10%	can	constrain	binding	energy	to	similar		

	precision	and	the	mass	loss	to	within	~0.01	Msun	assuming	the	crea-on	scenario	
	
GW170817	constraints	on	-dal	polarizability	consistent	with	ECSN	scenario	



Gandolfi,	Gezerlis,	Carlson,		
ARNPS	65	(2015)	

Systema-c	EOS	modeling	
Use	our	best	calcula-ons	of	PNM	proper-es	to		
constrain	our	EOS	models.	

2	purely	isovector	parameters	in	Skyrme	and	RMF		
energy	density	func-onals	–	allows	us	to	take	a		
baseline	model	and	refit	those	two	parameters	to	PNM	“data”	

Faioyev,	Newton,	Xu,	Li,	PRC86,	025804	(2012)	
	Brown,	Schwenk,	PRC89,	011307	(2014)	



Newton,	Li	PRC	80,	065809	(2009)	

Dependence	of	L	on	Baryon	Mass	of	J0737-3039B	

MG	=	1.249	MSUN	
M0	=	MG	+	BE	



Newton,	Li	PRC	80,	065809	(2009)	

Dependence	of	L	on	Baryon	Mass	of	J0737-3039B	

Experimental	Constraints	

MG	=	1.249	MSUN	
M0	=	MG	+	BE	



Newton,	Li	PRC	80,	065809	(2009)	

MG	=	1.249	MSUN	

Dependence	of	L	on	Baryon	Mass	of	J0737-3039B	

M0	=	MG	+	BE	

Experimental	Constraints	

ECSN	modeling		
constraints	



Newton,	Li	PRC	80,	065809	(2009)	

MG	=	1.249	MSUN	

Dependence	of	L	on	Baryon	Mass	of	J0737-3039B	

M0	=	MG	+	BE	

Experimental	Constraints	

ECSN	modeling		
constraints	

But:	Max	mass	assumed	was		
1.44Msun	













Symmetry	energy	

Wais	et	al,	arxiv:1602.01081	

n0	 10	n0	
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nucleon interactions as they are manifested in a many-nucleon context. A useful concept
that bridges the gap between ab initio nucleon-nucleon calculations, nuclear experimental
observables, and neutron star matter is that of uniform nuclear matter (NM). This is an
idealized system, homogeneous and infinite in extent, of neutrons and protons interacting
solely via the strong force. The energy per particle of such a system at a density ⇥ and
proton fraction x, E(⇥, x), is referred to as the nuclear matter equation of state (NM EOS).
In the regions of the neutron star core where protons and neutrons exist, the NM EOS
can be combined with the electron energy, and under conditions of charge neutrality and
beta-equilibrium gives an EOS for the core. In the inner crust, the NM EOS can be used
to describe the dripped neutrons (x = 0) and the bulk matter in the nuclear clusters. A
consistent model for the EOS of crust and core necessarily uses a unique NM EOS, and one
should expect parameters characteristic of a given NM EOS to correlate with both crust and
core properties.

Nuclear matter with equal numbers of neutrons and protons (x = 0.5) is referred to as
symmetric nuclear matter (SNM); nuclear matter with x = 0.0 is naturally referred to as
pure neutron matter (PNM). Nuclei on Earth contain closely symmetric nuclear matter at
densities close to nuclear saturation density ⇥0 ⇧ 2.7 ⇥ 1014 g cm�3 ⇤ 0.16 fm�3 = n0,
where we use n to refer to baryon number density. Thus experiment has constrained the
properties of E(⌅ n0,⌅ 0.5) to within relatively tight ranges, but the properties of PNM
remain uncertain from an experimental standpoint. In the past decade, much experimen-
tal activity has been devoted to extending our knowledge of nuclear interactions to more
neutron-rich systems and to higher and lower densities. Although we cannot produce pure
neutron matter in the laboratory, we can produce matter with proton fractions as low as
x ⇧ 0.3 in certain neutron rich isotopes and in the products of heavy ion collisions. This
allows us to obtain information on how E(⌅ n0, x) changes as x decreases.

By expanding E(n, x) about x = 0.5 using the isospin asymmetry variable � = 1�2x,
we can define a useful quantity called the symmetry energy S(n),

E(n, �) = E0(n) + S(n)�2 + ...; S(n) =
1

2

⌥2E(n, �)

⌥�2

����
�=0

, (1)

which encodes the change in the energy per particle of NM as one moves away from isospin
symmetry. This allows extrapolation to the highly isospin asymmetric conditions in neutron
stars. The simplest such extrapolation, referred to as the parabolic approximation (PA),
truncates the expansion to second order, giving

EPNM(n) ⇤ E(n, � = 1) ⇧ E0(n) + S(n) (2)

for the PNM EOS. Expanding the symmetry energy about ⇤ = 0 where ⇤ = n�n0
3n0

we
obtain

S(n) = J + L⇤+ 1
2Ksym⇤

2 + ..., (3)

where J , L and Ksym are the symmetry energy, its slope and its curvature at saturation
density.

Since neutron star matter contains a low fraction of protons, many inner crust and global
stellar properties are sensitive to the symmetry energy parameters J ,L, etc. To give a sim-
ple example, the pressure of PNM at saturation density is given by PPNM(n0)=n0L/3. The

x	=	proton	frac-on	
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nucleon interactions as they are manifested in a many-nucleon context. A useful concept
that bridges the gap between ab initio nucleon-nucleon calculations, nuclear experimental
observables, and neutron star matter is that of uniform nuclear matter (NM). This is an
idealized system, homogeneous and infinite in extent, of neutrons and protons interacting
solely via the strong force. The energy per particle of such a system at a density ⇥ and
proton fraction x, E(⇥, x), is referred to as the nuclear matter equation of state (NM EOS).
In the regions of the neutron star core where protons and neutrons exist, the NM EOS
can be combined with the electron energy, and under conditions of charge neutrality and
beta-equilibrium gives an EOS for the core. In the inner crust, the NM EOS can be used
to describe the dripped neutrons (x = 0) and the bulk matter in the nuclear clusters. A
consistent model for the EOS of crust and core necessarily uses a unique NM EOS, and one
should expect parameters characteristic of a given NM EOS to correlate with both crust and
core properties.

Nuclear matter with equal numbers of neutrons and protons (x = 0.5) is referred to as
symmetric nuclear matter (SNM); nuclear matter with x = 0.0 is naturally referred to as
pure neutron matter (PNM). Nuclei on Earth contain closely symmetric nuclear matter at
densities close to nuclear saturation density ⇥0 ⇧ 2.7 ⇥ 1014 g cm�3 ⇤ 0.16 fm�3 = n0,
where we use n to refer to baryon number density. Thus experiment has constrained the
properties of E(⌅ n0,⌅ 0.5) to within relatively tight ranges, but the properties of PNM
remain uncertain from an experimental standpoint. In the past decade, much experimen-
tal activity has been devoted to extending our knowledge of nuclear interactions to more
neutron-rich systems and to higher and lower densities. Although we cannot produce pure
neutron matter in the laboratory, we can produce matter with proton fractions as low as
x ⇧ 0.3 in certain neutron rich isotopes and in the products of heavy ion collisions. This
allows us to obtain information on how E(⌅ n0, x) changes as x decreases.

By expanding E(n, x) about x = 0.5 using the isospin asymmetry variable � = 1�2x,
we can define a useful quantity called the symmetry energy S(n),

E(n, �) = E0(n) + S(n)�2 + ...; S(n) =
1

2

⌥2E(n, �)

⌥�2

����
�=0

, (1)

which encodes the change in the energy per particle of NM as one moves away from isospin
symmetry. This allows extrapolation to the highly isospin asymmetric conditions in neutron
stars. The simplest such extrapolation, referred to as the parabolic approximation (PA),
truncates the expansion to second order, giving

EPNM(n) ⇤ E(n, � = 1) ⇧ E0(n) + S(n) (2)

for the PNM EOS. Expanding the symmetry energy about ⇤ = 0 where ⇤ = n�n0
3n0

we
obtain

S(n) = J + L⇤+ 1
2Ksym⇤

2 + ..., (3)

where J , L and Ksym are the symmetry energy, its slope and its curvature at saturation
density.

Since neutron star matter contains a low fraction of protons, many inner crust and global
stellar properties are sensitive to the symmetry energy parameters J ,L, etc. To give a sim-
ple example, the pressure of PNM at saturation density is given by PPNM(n0)=n0L/3. The
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III. THE EQUATION OF STATE OF UNIFORM NUCLEAR MATTER

Useful parameters characterizing the EoS of isospin asymmetric nuclear matter around

SNM (proton fraction x = 0.5; � = 0) and the saturation density of SNM ns can be derived

by expanding E(n, x) in a power series in the isospin asymmetry � = 1� 2x and the density

parameter ⇥ = n�n0
3n0

E(n, x) = E0(n) + S(n)�2 + ... (9)

E0(n) = E0 +
1
2K0⇥

2 + ... (10)

S(n) = J + L⇥+ 1
2Ksym⇥

2 + ... (11)

EPNM(n) ⇥ E0(n) + S(n) (12)

E0(n) = E(n, 0.5) is the binding energy per nucleon of SNM and S(n) = 1
2⌃

2E(n, x)/⌃�2x=0.5

is the nuclear symmetry energy. K0 is the incompressibility of SNM at saturation density.

J = S(n0), L = ⌃S(n)/⌃⇥|n=n0 and Ksym are the value of the symmetry energy, its slope

and its curvature at saturation density. In particular, the pressure of pure neutron matter at

sub-saturation densities, which plays a large role in determining the equilibrium composition

of the crust, can be expressed as

PPNM =
n2

3n0
[L+ (K0 +Ksym)⇥+ ...]. (13)

to the leading two orders.

Throughout most of this paper we will mainly use the modified Skyrme-like (MSL) pa-

rameterization of the nuclear matter EoS E(n, �) [59] (see appendix A) as our description

of uniform nuclear matter as a function of density and isospin asymmetry. The MSL model

has the same number of free parameters as the Skyrme description of uniform nuclear mat-

ter; the di�erence is that the MSL parameters can be analytically related to the properties

of uniform nuclear matter at saturation density, allowing a smooth variation of, e.g., the

symmetry energy at saturation J and its slope L, while holding fixed the isospin symmetric

part of the EoS. For comparison, we will also use a similar phenomenological EoS whose

form was originally written down by Bludman and Dover [60] (which we will refer to as BD,

see also appendix A), which was later modified and used to study finite nuclei and inner

crust composition by Oyamatsu and Iida (OI) [10, 61], and a selection of Skyrme EoSs [62]

whose basic properties are given in Table 1. The BD model has two fewer free parameters
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nucleon interactions as they are manifested in a many-nucleon context. A useful concept
that bridges the gap between ab initio nucleon-nucleon calculations, nuclear experimental
observables, and neutron star matter is that of uniform nuclear matter (NM). This is an
idealized system, homogeneous and infinite in extent, of neutrons and protons interacting
solely via the strong force. The energy per particle of such a system at a density ⇥ and
proton fraction x, E(⇥, x), is referred to as the nuclear matter equation of state (NM EOS).
In the regions of the neutron star core where protons and neutrons exist, the NM EOS
can be combined with the electron energy, and under conditions of charge neutrality and
beta-equilibrium gives an EOS for the core. In the inner crust, the NM EOS can be used
to describe the dripped neutrons (x = 0) and the bulk matter in the nuclear clusters. A
consistent model for the EOS of crust and core necessarily uses a unique NM EOS, and one
should expect parameters characteristic of a given NM EOS to correlate with both crust and
core properties.

Nuclear matter with equal numbers of neutrons and protons (x = 0.5) is referred to as
symmetric nuclear matter (SNM); nuclear matter with x = 0.0 is naturally referred to as
pure neutron matter (PNM). Nuclei on Earth contain closely symmetric nuclear matter at
densities close to nuclear saturation density ⇥0 ⇧ 2.7 ⇥ 1014 g cm�3 ⇤ 0.16 fm�3 = n0,
where we use n to refer to baryon number density. Thus experiment has constrained the
properties of E(⌅ n0,⌅ 0.5) to within relatively tight ranges, but the properties of PNM
remain uncertain from an experimental standpoint. In the past decade, much experimen-
tal activity has been devoted to extending our knowledge of nuclear interactions to more
neutron-rich systems and to higher and lower densities. Although we cannot produce pure
neutron matter in the laboratory, we can produce matter with proton fractions as low as
x ⇧ 0.3 in certain neutron rich isotopes and in the products of heavy ion collisions. This
allows us to obtain information on how E(⌅ n0, x) changes as x decreases.

By expanding E(n, x) about x = 0.5 using the isospin asymmetry variable � = 1�2x,
we can define a useful quantity called the symmetry energy S(n),

E(n, �) = E0(n) + S(n)�2 + ...; S(n) =
1

2

⌥2E(n, �)

⌥�2

����
�=0

, (1)

which encodes the change in the energy per particle of NM as one moves away from isospin
symmetry. This allows extrapolation to the highly isospin asymmetric conditions in neutron
stars. The simplest such extrapolation, referred to as the parabolic approximation (PA),
truncates the expansion to second order, giving

EPNM(n) ⇤ E(n, � = 1) ⇧ E0(n) + S(n) (2)

for the PNM EOS. Expanding the symmetry energy about ⇤ = 0 where ⇤ = n�n0
3n0

we
obtain

S(n) = J + L⇤+ 1
2Ksym⇤

2 + ..., (3)

where J , L and Ksym are the symmetry energy, its slope and its curvature at saturation
density.

Since neutron star matter contains a low fraction of protons, many inner crust and global
stellar properties are sensitive to the symmetry energy parameters J ,L, etc. To give a sim-
ple example, the pressure of PNM at saturation density is given by PPNM(n0)=n0L/3. The
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for the MSL EOS are displayed in the right panel of Fig. 3. Doing so naturally introduces
correlation between J and L; in the right panel of Fig. 2 we display the correlation obtained
in this way for the MSL model. It is fit by J = 20.53 + 0.207L. For reference, the correla-
tions obtained directly from the PNM calculations of HS and GCR, using the PA (Eq. (2))
with E0 = �16 MeV to obtain J from EPNM(n0), are depicted in Fig. 3; although offset
slightly from the MSL results, their slopes are similar. A similar correlation is obtained
from the Hugenholtz-Van-Hove (HVH) theorem which predicts a relation between J and L
whose uncertainty can be related to global nucleon optical potentials [63]

One experimental probe of the symmetry energy is the measurement of neutron skins
of nuclei. This probes the symmetry energy at densities around n = 0.1fm�3; thus many
models fix the symmetry energy at this density. In the right panel of Fig. 3 we show the
MSL PNM EOSs constrained by S(0.1fm�3) = 26 MeV; varying L then produces a steeper
correlation with J , also shown in the right panel of Fig. 2; J = 29.0 + 0.1L. It is worth
noting that increasing the density at which one fixes the symmetry energy in a given model,
increases the slope in the J-L plane.

Similar correlations are obtained from two relativistic mean field models [70, 71] and
from a best fit to a wide selection of model predictions of J and L [72], also shown in the
left panel of Fig. 2. Finally we also show correlations that emerge from nuclear mass fits
[64, 65] and analysis of data from heavy ion collisions [53].

In what follows we shall use sequences of MSL EOSs generated by varying L with a
variety of constraints on J : the sequence generated keeping J fixed will be labelled, e.g.,
‘J35’; the sequence generated by fixing the low density PNM EOS will be labelled the
‘PNM’ sequence; and the sequence generated by fixing S(0.1fm�3) = 26 MeV will be
labelled the ‘S0.1’ sequence. The model correlations in the right panel of Fig. 2 overlap in
the region 25<L<70 MeV, in line with the most recent experimental results. By combining
the MSL ‘PNM’ constraint with the requirement that 25<J<35 MeV and L>25MeV we
obtain a region in the J-L plane which we shall refer to as our ‘baseline’ region.

2.3. Correlations with neutron star properties

Some useful correlations of symmetry energy parameters with basic neutron star properties
have been established, which we review here; more details can be found in the following
references: [11, 70, 72, 80, 81]

• The pressure of neutron star matter in beta-equilibrium at n0 including the electron
contribution can be approximated [11, 81]

PNS(n0) ⇤
n0

3
L+ 0.048n0

�
J

30

⇥3�
J � 4

3
L

⇥
, (7)

where the second term provides a correction of only 2-3% for L = 25 MeV, rising to 10-
20% for L = 115 MeV, with J over the range 25 - 35 MeV. At densities slightly above or
below this, extra terms are introduced, but the leading order will remain the one proportional
to L alone.
• The radius of a neutron star is found to correlate with the pressure at a fiducial density

Symmetry	energy	

Combined	with	Coulomb	and	beta-equilibrium	condi-ons,	obtain	NS	core	EoS.	
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T.K.Nayak,	axiv:1201.4264	

Pb208	

Abrahamyan+,	PRL	108,	112592	(2012)	

Ozel	+,	ApJ	820,	2016	



Results:	J0737-3039B	

Limits	from		
progenitor/	
SN	modeling	

L	=	120	MeV	

L	=	20	MeV	

L	=	30	MeV	

L	=	80	MeV	



Results:	J0737-3039B	

Piecewise	polytrope	(model	A)	Strong	phase	transi-ons	(model	C)	

Requires	soy	EoS/strong	phase	transi-ons	or	greater	mass	loss	



Results:	J1756-2251	upper	mass	limit		

Requires	soy	EoS/strong	phase	transi-ons	



Results:	J1756-2251	lower	mass	limit		

Requires	soy	EoS/strong	phase	transi-ons,	greater	mass	
loss	than	simula-ons	provide	



Doherty+,	arxiv	1410.5431	
Takahashi+,	arxiv:1302.6402	

Systems	that	undergo	ECSN	

Small	frac-on	of	single	super-AGB	stars	(es-mated	<5%	of	all	CCSN)	
Rate	of	ECSN	could	go	up	when	taking	into	account	binary	evolu-on	



≈1.37-1.38 M¤ ONeMg Core becomes unstable to e-capture onto 20Ne,24Mg 
(Miyaji+, PASJ,32,303;1980, Nomoto, ApJ, 322,206; 1987) , collapses 
Supernova modeling predicts mass loss from collapsing core ~ 10-2 M¤ 
(Kitaura+, arxiv:astro-ph/0512065,  Janka+, arxiv:0712.4237) and low kicks 
Prediction: baryon mass MB of resulting neutron star is≈1.35-1.38 M¤  

One possible channel leads to core collapse at the ONeMg stage. This 
happens at a precise core mass and results in an Electron-Capture 
Supernovae(ECSN) 



Picture:NASA 

M ≤ 6 M¤  

 11 M¤ ≤ M  

The stellar evolutionary channels involving the lowest  
mass core-collapse supernova progenitors are not  
well accounted for 

Williams, Bolte, Koester, ApJ 693, 2009 
Timmes, Woosley, Weaver, ApJ457, 1996  

Why	is	this		
important?	

Popula-on	synthesis	models,	progenitors	of	SNe,	rates	of	produc-on	
of	low	mass	neutron	stars	and	neutron	star	binaries,	GW	searches	

Constraining	the	evolu-onary	history	of	specific	systems	and	SNe	(e.g.	
double	pulsar,	Crab)	


