The Dawn of Multi-Messenger Astrophysics with Gravitational Waves: the first joint detection of GWs and Light

LIGO-Virgo/Nick Gertonson - Daniel Schwen/Northwestern

UNIVERSITY

NORT

GW paper, the LVC, PRL, 2017

GW+GRB paper, LVC+Fermi+INTEGRAL teams, ApJ Letters, 2017

Very Low Energy in the Gamma-rays

GW+GRB paper, LVC+Fermi+INTEGRAL teams, ApJ Letters, 2017

Follow-up of GW170817 from Earth and Space

Image Credit: LIGO-Virgo

GW170817: EM follow-up the spectrum

Picture to keep in mind:

Relativistic Jets Radio-to-Xrays/

> Isotropic Component: Heavy Elements (UV/optical/IR)

Isotropic Component: Cocoon, Ejecta Tidal tail

Credit: NASA's Goddard Space Flight Center/CI Lab

Picture to keep in mind:

Relativistic Jets Radio-to-Xrays/

>) Isotropic Component: Heavy Elements (UV/optical/IR)

Isotropic Component: Cocoon, Ejecta Tidal tail

Credit: NASA's Goddard Space Flight Center/CI Lab

DECam team set-up for this event

Advanced LIGO-VIRGO network detects a source (30deg2)

DECam identifies candidate counterparts. (PI: Berger) Arcsec Localization

VLA detects off-axis radio afterglow emission.

Chandra detects off-axis X-ray afterglow emission.

Gemini provides spectroscopic confirmation.

> + 70 other + teams!!

All Eyes! G298048. Images will be downloadable here

 Ryan Chornock <chornock@ohio.edu</td>
 Thu, Aug 17, 2017 at 7:42 PM

 Reply-To: chornock@ohio.edu
 To: Sahar Allam <sallam@fnal.gov>, "Berger, Edo" <eberger@cfa.harvard.edu>,

 Douglas L Tucker <dtucker@fnal.gov>
 Cc: "Philip S. Cowperthwaite" <pcowperthwaite@cfa.harvard.edu>, Dillon Brout

 <dbrout@physics.upenn.edu>, Marcelle Soares Santos <marcelle@fnal.gov>, Dan

 Scolnic <dscolnic@kicp.uchicago.edu>, des-gw <des-gw@fnal.gov>

COW

Holy

Check out NGC 4993 in DECam_00668440.fits.fz[N5]

Attached is tonight's image + ps1-3pi.

Galaxy is at 40 Mpc.

-R

All Eyes! G298048. Images will be downloadable here

 Ryan Chornock <chornock@ohio.edu</td>
 Thu, Aug 17, 2017 at 7:42 PM

 Reply-To: chornock@ohio.edu
 To: Sahar Allam <sallam@fnal.gov>, "Berger, Edo" <eberger@cfa.harvard.edu>,

 Douglas L Tucker <dtucker@fnal.gov>
 Cc: "Philip S. Cowperthwaite" <pcowperthwaite@cfa.harvard.edu>, Dillon Brout

 <dbrout@physics.upenn.edu>, Marcelle Soares Santos <marcelle@fnal.gov>, Dan

 Scolnic <dscolnic@kicp.uchicago.edu> (des-gw <des-gw@thal.gov>)

100+

COW

Holy

Check out NGC 4993 in DECam_00668440.fits.fz[N5]

Attached is tonight's image + ps1-3pi.

Galaxy is at 40 Mpc.

-R

Discovery of visible light from the GW source GW170817

What had caused Ryan C. to curse?

Soares-Santos... Fong, Margutti et al. 2017

DECam Cerro-Tololo (Chile)

Discovery of visible light from the GW source GW170817

What had caused Ryan C. to curse?

DECam Cerro-Tololo (Chile)

GW170817: EM follow-up across the spectrum

The Kilonova Red+Blue emission

The first two weeks

Cowperthwaite, .. Margutti et al. 2017

"Brightness"

Near-infrared observations, together with information from visible light, the observations require two components!

i) Blue, fast: $M_{ej} = 0.01 M_{sol}$ $v_{ej} = 0.3c$

ii) Red, slow:
$$M_{ej} = 0.04 M_{sol}$$

 $v_{ej} = 0.1 c$

(Cowperthwaite et al. 2017; Nicholl et al. 2017, Smartt et al. 2017, Kasliwal et al. 2017 AND MORE)

"Time after Merger" ...faded away after ~2 weeks

Amazing Agreement!

Chornock et al. 2017

credit: Jennifer Johnson / SDSS / CC BY 2.0 (modified)

Evidence for *r*-process

1. That there was anything at all to see in the optical/NIR!

2. SED peaks near ~1 micron are a consequence of lanthanide opacity

Did we see GOLD? No!!!

Based on graphic created by Jennifer Johnson

credit: Jennifer Johnson / SDSS / CC BY 2.0 (modified)

Kasen et al. 2013

N

• Atoms/ions with open *f*shells have many more available states compared to iron-peak elements

Ion	Configurations	Number of levels	Number of lines
Nd 1	$4f^46s^2, 4f^46s(5d, 6p, 7s), 4f^45d^2, 4f^45d6p,$	31,358	70,366,259
	$4f^35d6s^2, 4f^35d^2(6s, 6p), 4f^35d6s6p$		
		Tanaka et al. 2017	

This matters for the opacity -> NIR

Kasen et al. 2013

Configurations

Ion

 Atoms/ions with open fshells have many more available states compared to iron-peak elements

Number of levels

Number of lines

Nd 1	$4f^{4}6s^{2}, 4f^{4}6s(5d, 6p, 7s), 4f^{4}5d^{2}, 4f^{4}5d6p, 4f^{3}5d6s^{2}, 4f^{3}5d^{2}(6s, 6p), 4f^{3}5d6s6p$	31,358	70,366,259
	This matters for the	Tanaka opacit	et al. 2017 Y
	-> NIR		

Ingredient #2: Expansion= everything is blended

 The effects of weak lines are greatly enhanced in material with strong velocity gradients

r-process -> NIR

Comprehensive kilonova photometry

Villar,...RM et al., 2017

Image credit: NSF LIGO Sonoma State University A. Simonnet

This is Gold

Section of the sectio

Image credit: NSF LIGO Sonoma State University A. Simonnet

This is Gold

Poloci - Coci -

Image credit: NSF LIGO Sonoma State University A. Simonnet

This is Gold

Image credit: NSF LIGO Sonoma State University A. Simonnet

This is Gold

Blue Kilonova

Red Kilonova

Percere contraction of the second sec

Kilonova Colors

Metzger+2017

The broad-band Radio-to-Xray spectrum NON-THERMAL EMISSION

Margutti et al. 2018

Radio

A POWER-LAW in the Sky

A POWER-LAW in the Sky

Non-thermal **synchrotron** emission across the spectrum: the show is still on

Extremely **wellbehaved** SPL spectrum over 8 orders of magnitude in frequency

Particle acceleration by

trans-relativistic shock in action! Emitting material has Γ~3-10

GW170817 Non-thermal emission is RISING!

Observer sees more Energy(t)

REAL

"FAKE"

What's the nature of the mildly relativistic ejecta? (What is the INTRINSIC nature of GW170817)

New class of transients powered by NS-NS mergers

Classical Short GRB viewed from the side

Onset of the afterglow (on-axis /spherical)

Hallinan+2017

Fig. 3. Radio light curve is consistent with either an off-axis jet or a cocoon. Light curves are shown for both proposed cocoon models, i.e., a high energy cocoon due to a choked jet (red solid curve) and a low energy cocoon with jet break-out (black dashed curve). The light curve favors the low energy cocoon with jet

With NEW DATA does not work

Single Gamma fireball does NOT work

REAL energy injection

Kasliwal+2017; Mooley+2017; Gottlieb+2017; Hotokezaka +2018

(Γβ)-5

Failed Jet

Ek

Ejecta kinetic energy profile

Introduce STRUCTURE in the quasispherical ejecta

E(>GammaBeta)~(GammaBeta)^-alpha

Off-Axis Jet [w. structure] APPARENT energy injection

DECELERATION

REAL or APPARENT

Structured Jet Simulations for GW170817

Margutti et al. 2018

Structured Jet Simulations for GW170817

Margutti et al. 2018

POINT #1 A POWER-LAW in the Sky

Particle acceleration by a transrelativistic jet in action $\Gamma \sim (3=10)$

POINT #2 New Method for Hubble Constant Measurement (Schutz 1986)

H0 paper, LVC + 6 EM host-galaxy co-discovery teams, Nature, 2017

Improving the constraints on HO with GW + EM $\,$

Guidorzi, Margutti.. Fong et al., 2017

An ultra-relativistic outflow in **GW170817** is NOT ruled out

POINT #3: how to distinguish between quasi-spherical models and structured-jet models?

Jetted models Quasispherical

Jetted models Quasispherical