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Probable Black Hole Formation in GW170817

» The GRB suggests a black hole formed within 1.75 s.

» Large ejected mass estimates imply any black hole
formation was not prompt, but delayed by tenths of a
second because a substantial disc wind was necessary.

» Most of the ejecta is inferred to have very high opacity,
suggesting synthesis of nuclides between the 2nd and 3rd
r-process peak. This implies low electron fractions in
most of the ejecta, incompatible with long-term (2 0.3 s)
neutrino absorption and a long-lived neutron star.

» A long-lived but metastable neutron star supported by
high rotation would pump large amounts of spin-down
energy into the remnant, incompatible with the weak
GRB and inferred moderate remant kinetic energy.

» Simulations show that there was too much angular
momentum initially in the remnant for a
uniformly-rotating star; it was differentially-rotating.
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Maximum Mass Constraint

» Pulsar observations imply that slowly rotating neutron
stars have a maximum mass M,,,, = 2M,,.

» A uniformly rotating star has M., >~ 1.17 — 1.20M,,,,.
Supramassive stars, with M., < M < M.y, are
metastable but have long t >> 0.1 s lifetimes.

» A differentially-rotating star likely has M,,.x g ~ 1.5M ..
Hypermassive stars, with My, , < M < Mpx 4, are
metastable with short t ~ 0.1 s lifetimes.

» The chirp mass of GW170817, M = 1.187333 M, means
the total inspiralling mass M;,; = my; + m, is between
2.72Mg, (¢ = my/my = 1) and 2.78M, (¢ = 0.7).

» Corrections for gravitational binding energy and mass loss
suggest that 2.28M, S Moy S 2.53M.

» To not initially be stabilized by uniform rotation implies
Mumax S Myem/1.17 S 2.16 M.
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Tidal Deformability

Tidal deformability A is the ratio between the induced dipole
moment @ and the external tidal field E;, Q; = —\Ej;..

ko is the dimensionless 02T
Love number. It is L
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When We Know What
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There are also spin-spin, and spin-orbit contributions to ®.

For spins aligned with L, they act oppositely to 6 1.

In a post-Newtonian expansion, d®s is characterized by a single
spin parameter [3, primarily determined around 50 Hz.
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LIGO/VIRGO Parameter Determination

Although there are 11 free wave-form parameters to post-
Newtonian order, LIGO/VIRGO used 13 to fit their data:

» Sky location (2)

» Distance (1)

» Inclination (1)

» Coalescence time (1)
» Coalescence phase (1)
» Polarization (1)

» Component masses (2)
» Spin parameters (2)

» Tidal parameters (2)
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GW170817 Tidal Deformability Constraints
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Piecewise Polytropic Equations of State

» For many reasons, it's believed neutron stars have hadronic
crusts; the EOS is well-determined below ng ~ 0.5n;.

> no = ns/2.7, po = 0.2177 MeV fm~3, g¢ = 56.24 MeV fm—3.

» Read et al. found that M — R is well-approximated with an
EOS above ng containing as few as 3 polytropic segments.

» Read et al. found optimal upper boundaries (n1, n2, and n3 =
1.85ns, 3.7ns, and 7.4ns) globally fit wide varieties of hadronic
EOSs, leaving just 3 EOS parameters: pi, p2, and ps.

» Neutron matter theory, nuclear experiment, and the unitary
gas suggest that 8.4 MeV fm~3 < p; < 20 MeV fm~—3, but
we extend the upper limit to 30 MeV fm~3. These limits
imply 32 < S,/MeV < 38 and 39 < L/MeV < 85.

» The parameters p» and ps are limited from above by causality
and below by a maximum mass 1.9M, < Mp,. < 2.4M,,.

» The parameters p1, p2 and p3 are uniformly sampled.
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The Radius-Pressure-M,,,.,, Correlations
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M — R and EOS Constraints
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Dimensionless Tidal Deformability
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Dimensionless Tidal Deformability
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Using the \ o< 578 Correlation

Given that ko o< 871 it is inevitable that A ~ af~%. In the
GW170817 mass range, 1.1 < M/Mg < 1.6, piecewise polytropes
give a = 0.0093 + 0.0007.

Furthermore, in this mass range, R is insensitive to M. As long as
Mmax & 2Ms, AR = Ri6 — R1.1 < 0.46 km, < AR >= —0.07 km
and V< AR? > =0.11 km. —1.117 < (¢?/G)dR/dM < 0.261,
and < dR/dM >= —0.134G /2.

With the assumptions A= aB7% and Ry = Ri.4, one finds
— 16a [ Riac? 0 q8/5 2
N=— 12 —-11 12g°).

13 (GM> 1+ g5 q+12q)

This is remarkably insensitive to g:

O _16a (Riac®\° (1-q)q*/°
dqg 65 \ GM ) (14 q)31/5

which vanishes when g = 1. A(g =0.7)/A(g = 1) = 1.02.

(96 — 263q + 964?),




Dimensionless Binary Tidal Deformability
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Dimensionless Blnary Tidal Deformability
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Modified M — R and EOS Constraints
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Tidal Deformabilities
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The Bias of Uncorrelated Deformabilities

Randomly selecting
R; and R, over a

range of 3-4 km is
similar to randomly ,
selecting A\; and )\, 3f
within their natural

ranges of 1000 or
2000 (model B). <

Instead, randomly
selecting \; and
utilizing Ay = q_65\1
(model A) decreases S
the 90% confidence  12.0 12.5
contour of A by

100-150.
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Conclusions from GW170817

» A constraint on A corresponds to a constraint on the neutron
star radius in the GW170817 mass range:

R =~ (3.69 + 0.04)AY®(M/My) km
dR ~ 0.22(dA/100) km

» This correlation between A and R is tight because A is
insensitive to g, a poorly-determined quantity.

» The quoted constraint A < 700 — 800 is not justified by the
A1 — \p constraints; its too small by 250-350 due to A — o
correlations, even considering hybrid (twin) stars..

» Spin priors with negative values correspond to spins
anti-aligned with L, which is physically improbable except for
systems formed by capture. Such priors overestimate A.

» Failure to include the natural correlation between \; and ),
and that A\, > )i, overestimates A by 100-150

» An upper limit to M,,,x does not constrain neutron star radii.
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