Gravitational Waves and Electromagnetic Signals from a Neutron Star Merger

end-to-end physics of NS mergers

binary gravitational evolut waves (10⁶-10⁹ years) Final inspiral (minutes)

merger dynamics (miliseconds) hydrodynamics, general relativity, nuclear equation of state, neutrino physics,

post-merger accretion (seconds) hydrodynamics, gravity, neutrino physics,nuclear reactions, magnetic fields

radioactivity (days-weeks)

nuclear decay chains (alpha, beta, gamma, fission) thermalization

optical/IR "kilonova" nucleosynthesis (seconds) *r-process reaction networks, nuclear data inputs*

radiation transport (days weeks) Time-dependent spectral Boltzmann transport Atomic microphysics dynamical ~ milliseconds

tidal tail ejecta $M \sim 10^{-4} - 10^{-2} M_{sun}$ $v \sim 0.2c - 0.3c$ very neutron rich, Y_e ≤ 0.1

MERGER MASS EJECTION

 Bauiswein+ 2014

"squeezed" polar ejecta M ~ $10^{-4} - 10^{-2}$ M_{sun} v ~ 0.2c - 0.3c less neutron rich Y_e ≥ 0.25

post-merger t ~ seconds

disk wind ejecta

 $\begin{array}{l} M \sim \ 10^{\text{-2}} - \ 10^{\text{-1}} \ M_{sun} \\ v \sim \ 0.05c \ \text{-} \ 0.1c \\ range \ of \ Y_e = \ 0.1 \text{-} \ 0.4 \end{array}$

neutrino irradiation of NS merger ejecta weak interactions drive Y_e closer to 0.5 (e.g., Metzger & Fernandez 2013)

richers, kasen, et al 2015

Abundances from r-process nucleosynthesis

reaction networks calculations for fixed entropy & expansion time

Schematic view of NS merger ejecta

shocked polar v ~ 0.2c-0.3c M < 0.01 M₀ light r-process

> disk wind mixed composition v ~ 0.1c M ~ 0.01 - 0.1 M_☉

tidal tails v ~ 0.2c-0.3c M < 0.01 M₀ heavy r-process

neutron star + neutron star prompt collapse to black hole

Radioactive decay and thermalization

Radioactive kilonova light curve models

modeling kilonova light curves and spectra solution to the radiation transport (Boltzmann) equation

 $I_{\nu}(x, y, z, \nu, \theta, \phi, t)$ = photon field specific intensity

 $\chi(x, y, z, \nu, t) =$ opacity coefficient

 $\eta(x, y, z, \nu, t) = \text{emissivity}$

 χ and η set primarily by numerous blended atomic line transitions depends on ionization/excitation state of gas (level populations assumed to be local thermodynamic equilibrium)

Transport solved by Monte Carlo methods (Sedona code) *e.g,. Kasen+2006, Roth and Kasen (2015)*

r-process opacity and atomic complexity

limited experimental line data requires atomic structure modeling

s-shell (g=2)

	1 1 1.0079		p-shell (g=6)															2 He 4.0026	
	ithium 3	beryllium 4												5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
	Li	Be					B	C	N	Ó	F	Ne							
\vdash	6.941 sodium	9.0122 magnesium						10.811 aluminium	12.011 silicon	14.007 phosphorus	15.999 sulfur	18.998 chlorine	20,190 argon						
	11	12					Ь		13	14	15	16	17	18					
	Na	Mg	AI Si														S	CI	Ar
F	22.990	24.305 coldium		scandium	titanium	vanadum	chromium	Tipe	26.982 collium	28.086	30.974	32.065	35.453	39.948 kombon					
1	19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.098 rubidium	40.078 strontium		44.956	47.867	50.942 nichkura	51,996 molyhdopum	54.938 technolium	55.845 rutbookum	58.933 rbodium	58,693 nallactium	63,546	65.39 codmium	69.723 Inclum	72.61 tio	74.922 optimopy	78.96 toTurium	79.904	83.90
	37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr		Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
	85.468	87.62 barium		88.906 Jutotkum	91.224 batnium	92.906 tantakum	95.94 hungston	[98] rbookum	101.07 osmium	102.91 Hidlum	106.42 nlatioura	107.87	112.41	114.82 tholiam	118.71	121.76 biomuth	127.60 noionium	126.90 astatino	131.29
	55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	132.91 francium	137.33 radium		174.97 lawrencium	178.49 rutherfordium	180.95 dubnium	183.84 seaborgium	186.21 bohrium	190.23 hassium	192.22 meitnerium	195.08 ununnilium	196.97 unununium	200.59 unurbium	204.38	207.2 Ununquadium	208.98	[209]	[210]	[222]
	87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
	Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
	[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]]	289	J			

*Lanthanide series	Lanthanum 57		59 Pr	60 Nd	61 Pm	62 Sm	europium 63 Eu	64 Gd	65 Tb	66 Dv	67 Ho	erbium 68 Er	69 Tm	70 Yb	f_shc
* * Actinide series	138.91 actinium 89 Ac	140.12 thorium 90 Th	140.91 protactinium 91 Pa	144.24 uranium 92 U	[145] neptunium 93 Np	150.36 plutonium 94 Pu	151,96 americium 95 Am	157.25 curitum 96 Cm	158.93 berkelium 97 Bk	162.50 californium 98 Cf	164.93 einsteinium 99 ES	167.26 fermium 100 Fm	168,93 mendelevium 101 Md	173.04 nobelium 102 No	(g=1)

r-process opacity and atomic complexity

Half-filled shells have more complex configurations

Atomic line/level data is still sparse (especially in infrared) New atomic-structure calculations cover the statistical properties of all r-process species but uncertainties remain in details (kasen+ in prep)

Level energy distributions - singly ionized species atomic structure calculations of all r-process species w/ autostructure code

kilonova opacity from atomic structure modeling

Model kilonova spectra dependence on lanthanide fraction

kasen, badnell and barnes 2013, barnes & kasen 2013, kasen+2017

Model kilonova light curves: dependence on lanthanide fraction

kasen, badnell and barnes 2013, barnes & kasen 2013, kasen+2017

Abundances from r-process nucleosynthesis

reaction networks calculations for fixed entropy & expansion time

kilonova SSS17a bolometric light curve

kilonova AT2017gfo bolometric light curve

Multi-wavelength photometry of SSS17a

kilonova SSS17a bolometric light curve

kilonova AT2017gfo spectrum @ day 1.5

kilonova AT2017gfo spectrum @ day 1.5

kilonova SSS17a spectrum @ day 2.5 data Pian+2017 x-shooter, models Kasen+2017

Model spectrum dependence on composition features are Doppler-broadened blends of multiple lines

Spectral determination of ejecta velocity

(consistent with blackbody emitting radius, e.g., Drout+17, Troja+17)

GW170817: Some questions

Are neutron star mergers a site (*the* site) of the r-process?

Blue kilonova (light r-process) M ~ 0.025 M_{sun} - v ~ 0.3c; X_{lan} < 10^{-4}

Red kilonova (heavy r-process) M ~ 0.04 M_{sun} - v ~ 0.1c, X_{lan} ~ 10^{-2}

Merger rate (from LIGO): $R_m \sim 1$ per 10⁴ - 10⁵ years per galaxy

Can potentially account for all r-process in galaxy $M_{galaxy} = 5 \times 10^3 M_{sun} = f_{star} \times M_m \times R_m \times t_{gal}$ But ejecta masses and rates are certain. Was the 1 event typical?