Equation of state constraints from modern nuclear interactions and observation

Kai Hebeler Seattle, March 12, 2018

First multi-messenger observations of a neutron star merger and its implications for nuclear physics

in collaboration with Svenja Greif, Jim Lattimer, Chris Pethick and Achim Schwenk

TECHNISCHE UNIVERSITÄT DARMSTADT

Chiral effective field theory for nuclear forces

- choose relevant degrees of freedom: here nucleons and pions
- operators constrained by symmetries of QCD
- short-range physics captured in few short-range couplings
- separation of scales: Q << Λ_b , breakdown scale Λ_b ~500 MeV
- power-counting: expand in powers Q/Λ_b
- systematic: work to desired accuracy, obtain error estimates

Many-body forces in chiral EFT

Many-body forces in chiral EFT

Results for the neutron matter equation of state

Calculation of general isospin-asymmetric nuclear matter

uncertainty bands determined
 by set of 7 Hamiltonians

many-body framework allows
 treatment of any decomposed
 3N interaction

Drischler, KH, Schwenk, PRC 054314 (2016)

Calculation of general isospin-asymmetric nuclear matter

Problem:

Calculation of neutron star properties require EOS up to high densities. Microscopic calculations limited to 1-2 nuclear saturation density. Strategy:

Use observations to constrain the high-density part of the nuclear EOS.

Symmetry energy and neutron skin constraints

$$S_{v} = \frac{\partial^{2} E/N}{\partial^{2} x} \Big|_{\rho=\rho_{0}, x=1/2}$$
$$L = \frac{3}{8} \left. \frac{\partial^{3} E/N}{\partial \rho \partial^{2} x} \right|_{\rho=\rho_{0}, x=1/2}$$

Piekarewicz, PRC 85, 041302 (2012)

neutron skin constraint from neutron matter results: $r_{skin}[^{208}Pb] = 0.14 - 0.2 \text{ fm}$ KH, Lattimer, Pethick, Schwenk, PRL 105, 161102 (2010)

- neutron matter give tightest constraints
- in agreement with all other constraints

Neutron star radius constraints

incorporation of beta-equilibrium: neutron matter \longrightarrow neutron star matter

parametrize piecewise high-density extensions of EOS:

- use polytropic ansatz $\ p \sim
 ho^{\Gamma}$
- \bullet range of parameters ~ $\Gamma_1, \rho_{12}, \Gamma_2, \rho_{23}, \Gamma_3~$ limited by physics

KH, Lattimer, Pethick, Schwenk, ApJ 773, 11 (2013) KH, Lattimer, Pethick, Schwenk, PRL 105, 161102 (2010)

Constraints on the nuclear equation of state

constraints lead to significant reduction of EOS uncertainty band

Constraints on the nuclear equation of state

increased M_{\max} systematically reduces width of band

Constraints on neutron star radii

- low-density part of EOS sets scale for allowed high-density extensions
- current radius prediction for typical $1.4 \, M_{\odot}$ neutron star: $9.7 13.9 \, \mathrm{km}$

Representative set of EOS

KH, Lattimer, Pethick, Schwenk, ApJ 773, 11 (2013)

- constructed 3 representative EOS compatible with uncertainty bands for astrophysical applications: soft, intermediate and stiff
- allows to probe impact of current theoretical EOS uncertainties on astrophysical observables

Constraints from moment of inertia measurements

Greif, KH, Lattimer, Pethick, Schwenk, in preparation

Constraints from moment of inertia measurements

Greif, KH, Lattimer, Pethick, Schwenk, in preparation

Constraints from moment of inertia measurements

radius constraints for $1.4 M_{\odot}$ relatively insensitive to mass ratio $q = \frac{M_1}{M_2}$

Backup slides

- low-density part of EOS sets scale for allowed high-density extensions
- current radius prediction for typical $1.4\,M_{\odot}$ neutron star: $9.7 13.9\,\mathrm{km}$
- new observatories could significantly improve constraints

Results for symmetric nuclear matter

"Very soft potentials must be excluded because they do not give saturation;

they give too much binding and too high density. In particular, a substantial tensor force is required."

Hans Bethe (1971)

Results for symmetric nuclear matter

-18

0.13 0.14 0.15

they give too much binding and too high density. In particular, a substantial tensor force is required."

Hans Bethe (1971)

Drischler, KH, Schwenk, PRC93, 054314 (2016)

 $n_0 \, [\text{fm}^{-3}]$

0.16

0.17

0.18 0.19

Gravitational wave signals from neutron star binary mergers

• simulations of NS binary mergers show strong correlation between between $f_{\rm peak}$ of the GW spectrum and the radius of a NS

3.5

* 🧳

▲ 💥

ullet measuring $f_{
m peak}$ is key step for constraining EOS systematically at large ho