

Outflows from NS merger remnant accretion disks

Rodrigo Fernández (University of Alberta)

Overview

1. Overview of disk evolution

2. Nucleosynthesis and Kilonova contribution

3. Current Status of disk outflow research

Dynamical Phase: Merger

Unequal mass NS-NS merger:

Phases:

- inspiral
- merger
- remnant + ejecta

Rezzolla+ (2010)

Dynamical Phase: Merger

Rezzolla+ (2010)

Unequal mass NS-NS merger:

Phases:

- inspiral
- merger
- remnant + ejecta
- relativistic jet (?)

Large body of work:

MPA, Kyoto, Caltech-Cornell-CITA Princeton, Frankfurt, Trento, Stockholm, Illinois, Perimeter, etc.

Disk evolution

also Popham+ (1999), Chen & Beloborodov (2003)

$$\begin{split} t_{\rm orb} &\simeq 3 R_{50}^{3/2} M_3^{-1/2} \mbox{ ms} \\ t_{\rm visc} &\simeq 1 \alpha_{0.03}^{-1} R_{50}^{3/2} M_3^{-1/2} \left(H/3R \right) \mbox{ s} \\ t_{\rm therm} &\simeq \frac{c_s^2}{v_K^2} t_{\rm visc} \lesssim t_{\rm visc} \end{split}$$

- Disk evolves on timescales long compared to the dynamical (orbital) time, due to viscous processes
- Weak interactions freeze-out as the disk spreads viscously: final Ye
- Gravitationally-unbound outflows driven by:
 - Neutrino heating (on thermal time) Ruffert & Janka (1999), Dessart+ (2009)
 - Viscous heating and nuclear recombination (on viscous time)

 ${E_lpha\over GM_{
m BH}/R}\simeq 1R_{600}M_3^{-1}$ Metzger+ (2008)

- MHD stresses

Kiuchi (2015), Siegel (2017)

Wind from remnant accretion disk

- Neutrino cooling shuts down as disk spreads on accretion timescale (~300ms)
- Viscous heating & nuclear recombination are unbalanced
- Fraction ~10-20% of initial disk mass ejected, ~1E-3 to 1E-2 solar masses
- Material is neutron-rich (Ye ~ 0.2-0.4)
- Wind speed (~0.05c) is slower than dynamical ejecta (~0.1-0.3c)

RF & Metzger (2013), MNRAS Just et al. (2015), MNRAS RF et al. (2015), MNRAS Setiawan et al. (2005)

Lee, Ramirez-Ruiz, & Lopez-Camara (2009)

Metzger (2009)

Effect of BH spin on disk wind

Hypermassive NS versus BH

Disk around HMNS

Interplay of disk wind and dynamical ejecta

RF, Foucart, Kasen, Lippuner, et al. (2017)

Nucleosynthesis with Tracer Particles

- Nuclear network: ~7000 isotopes, include neutrino effects
- Non-spinning BH, parameter dependencies

M-R Wu, RF, Martinez-Pinedo & Metzger (2016)

Black Hole Accretion Disks

• Most sensitive to viscosity: expansion time vs weak interaction time

 Also sensitive to disk mass and degeneracy: neutrinos & equilibrium Ye M-R Wu, RF, Martinez-Pinedo & Metzger (2016)

- Not very sensitive to initial Ye
- See also Just et al. 2015

HMNS disks

Lippuner, RF, Roberts, et al. (2017)

HMNS disks

Lippuner, RF, Roberts, et al. (2017)

HMNS lifetime and kilonova

Longer lifetime - more neutrino irradiation - less neutrons - smaller opacity - bluer emission

Kasen, RF, & Metzger (2015)

Viewing angle dependence

Kasen, RF, & Metzger (2015)

RF, Quataert, Schwab, Kasen & Rosswog (20

Summary

- A significant amount of material (>10% of initial disk mass) is ejected from the accretion disk on various timescales, for GW170817 it is thought to be the dominant contribution to the kilonova
- 2. Biggest effect is the presence of a HMNS. Strong neutrino irradiation generates lanthanide-poor outflows: blue kilonova.
- 3. Outstanding issues: inclusion of MHD, neutrino transport, proper treatment of the HMNS. Can the disk account for the high speed of the blue kilonova ejecta in GW170817?

