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OUTLINE

Where do all the elements in the universe come from?

« Can merging neutron stars account for all the observed elements?
 The devil is in the details

* For detailed nucleosynthesis calculations, what are the dominant nuclear
physics uncertainties?

« How do we measure the nuclide properties?
« How do we get access to these nuclides?
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Number of Protons (Z)

Number of Neutrons (N) .
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POSSIBLE SOURCES OF THE R-PROCESS

r-process requires: T ~ 1-2 GK

n,~ 10%*/cm?

Supernovae??? Merging neutron stars???



WHAT THE NS-NS MERGER DOES TELL US

LIGO-Hanford LIGO-Livingston

* Neutron star mergers do happen, and we can detect them!
« Merging neutron stars do produce r-process elements (from opacity)

« There seems to be considerable ejecta from merging neutron stars
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WHAT THE NS-NS MERGER DOES NOT TELL US

Absolute mag (AB) + offset
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- With one observed event, it is hard Loy Usridi6y .
to determine neutron star merger i
rate, and therefore hard to determine ) m2+6-°_
total contribution of neutron star 30 L, mERb

mergers to element production 0 5 10 15 20

© It iS diffiCUIt tO determine if thiS Rest frame time from merger (days)
event is ‘typical’

M. R. Drout et al., Science 10.1126/science.aaq0049 (2017).
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THERE ARE STILL MANY QUESTIONS, PERHAPS
MORE THAN THERE WERE BEFORE

“The outcome of any serious research can only be to make two
questions grow where only one grew before.”

Thorstein Veblen

*  Where within the merging
neutron stars do the r-process
elements get created?

* How consistent are merging
neutron stars in producing r- “
process elements? kS, ]

« Can merging neutron stars explain .“2’ -8.00 fy _ ]
E :
[0}
x

robustness of heavy r-process
elements and variability of light r-
process elements?

« What is the contribution of
merging neutron stars to the total
production of heavy elements in
the universe?

« How much do supernovae
contribute?
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Atamic Niimber

Cowan et al., Carnegie Observatories Astrophysics Series. 5, 223 (2011).

6 Argonne &




ROLE OF NUCLEAR PHYSICS
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Uncertainties in the nuclear physics:
* masses

- B-decay lifetimes

* B-delayed neutron emission

* (n,Y), (a,n) rates

- fissionability
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THEORY/MODEL UNCERTAINTIES

 Theories/models agree to some extent in regions where data exists (but
not necessarily to the precision required)

 However, theories/models often diverge quite wildly outside the realm of

experimental data
Courtesy A. Spyrou, from Nikas, Perdikakis (CMU)
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Best solution: Get data wherever possible!
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CHALLENGES/OPPORTUNITIES IN NUCLEAR
PHYSICS

S-process

rp-process

= number of protons

r-process

fusion up to iron

~——————3 number of neutrons

« Challenges:
- Some of the more interesting isotopes are the hardest to produce

* These neutron-rich isotopes are also short-lived
* Production of these isotopes generally have contaminants
« Too many nuclides, too little time!
« Solutions:
 Develop equipment which are fast, efficient, and can handle contaminants
« Develop new facilities which can produce the interesting neutron-rich isotopes in
large quantities
« Have theory/models/simulations guide experiments and prioritize measurements
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EXPERIMENTALISTS GUIDED BY THEORY

« We can’t just measure ‘everything’!

 Too many nuclides, too little time. ”

 Demand for ‘beamtime’ at accelerator 52 ]
facilities is high; not every proposal gets SO AN AN T .
accepted, therefore need solid justification as 4s =
to why particular nuclides need to be 46 = i
measured N =]
. e - . . — 11
* Often guided by sensitivity studies to focus 2 o i =
research and effort = _ =
« Studies either: S - —
- look at how ‘good’ existing nuclear . —_— e
data/models are at reproducing the observed ——
abundances (for example), and see how the ) i
change in one nuclide property affects the SO [ B B PR —
distribution (ie: how ‘sensitive’ it is 48 |
*  Work backwards (reverse engineer) to 46 - , e
determine the nuclear physics that should exist T o i -
for the particular astrophysical trajectory o b e
. R Its: 52 I I )
esults: lIlIIIII=-
* Which nuclides are important to study 48 =
« To what precision do they need to be 96 — s
measured i= B e 0

Neutron Number - N

M.R. Mumpower et al., Prog. Part. Nucl. Phys. 86, 86 (2016)
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JINA (JOINT INSTITUTE FOR NUCLEAR

ASTROPHYSICS)
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FUTURE FACILITY: FRIB (FACILITY FOR RARE
ISOTOPE BEAMS)

* Production of isotopes through fragmentation
* FRIB project completion date is June 2022

* FRIB will serve as a national user facility for world-class rare isotope
research, (~1400 scientists currently engaged) and builds on more than
50 years of nuclear science expertise developed at MSU

yyyyyyyyyyyyyyyy
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HOW FRIB WILL WORK .
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EXISTING FACILITY: CARIBU (CALIFORNIUM
RARE ISOTOPE BREEDER UPGRADE)

* Production of neutron-rich
isotopes through fission (2°2Cf
spontaneous fission source)

‘Stopped’ beam - 252Cf source properties:

experimental | | + 3% fission branch
arca

High voltage
platform

+ 2.6 year half-life
* ~1 Ci (40 billions
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In-flight

- CARIBU beams carm™ee S e

accelerated through ATLASTom= 15 ., —— i o
MeV/A , |

- Basic properties of fission Toi [ w i LB <A

fragments can be measured with

instruments in ‘stopped’ beam area
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EXISTING FACILITY: CARIBU

Gas catcher Isobar separator

(select specific

1 Ci 252 collect fission
1 Ci =%Cf source #ragments) fragment) R ~ 14,000 to

20,000

MR-TOF
(high-resolution
mass separation)
R ~ 100,000
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REACH OF PRESENT AND FUTURE FACILITIES

o il = - Early sensitivity studies
{  for neutron-star mergers
Cep (left) show some key
B i nuclides are currently in
A e st 4°7§ v S reach of CARlBU, and
A —— = P e r others will be within reach
i 03w L E| of FRIB
: : : =
R. Surman et al., EPJ Web of Conferences 66, 07024 (20?4) E T e e 5.l
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NEAR FUTURE: N=126 FACTORY

» Use deep-inelastic reactions to
produce neutron-rich isotopes in the
N=126 region

* But there has been a historic
challenge of collecting reaction
products efficiently:

* New N=126 facility at Argonne
will capitalize on high-intensity
beams and high-intensity gas
catcher technology

* Will feed suite of low-energy
experiments (masses, decay
spectroscopy, ...)
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LEBIT, MSU CPT, ANL

Y [mm]

MASS MEASUREMENTS IRECY: | i

6 _a 2 0 2
X [mm]

* More than 450 neutron-rich nuclides have been measured to ~ 15 keV (0.1 ppm)
precision or better with Penning traps

* Much interest in this region has driven the development of new techniques for
the mass measurements of nuclides for the astrophysical r process
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MR-TOF: MULTI-REFLECTION TIME-OF-FLIGHT MASS SEPARATOR

* lons bounce between mirror electrodes picking up time separation t ~ ,/m/q

-+ Resolving power, R = % ~ 50,000 within 10s of ms
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Can be used as a mass measurement device, or be used with a BNG
(Bradbury-Nielsen gate) as a mass separator
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HALF-LIFE MEASUREMENTS
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A.J. Mitchell ef al., NIMA 763, 232 (2014).
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* More than 200 half-lives 3
in the rare-earth region
recently measured at the
RIKEN facility in Japan P
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systematic effects)
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G. Lorusso et al., Phys. Rev. Lett. 114, 192501 (2015).
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BETA-DELAYED NEUTRON EMISSION
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CROSS-SECTION MEASUREMENTS
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P.F.F. Carnelli ef al., NIMA 799, 197 (2015).
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A. Spyrou et al., J. Phys. G: Nucl. Part. Phys. 44, 044002 (2017).
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SUMMARY

- Although we have now observed one merging neutron star event,
there are still many unanswered questions.

« Measuring properties of nuclides will help to determine where in
NS-NS mergers does nucleosynthesis occur, abundance pattern,
other r-process sites.

« Reaching the nuclides involved in the r-process has motivated the
construction of new facilities and the development of new
measurement techniques.

- With all that is happening now (GW1708107 observation, new
facilities, advanced techniques), these are truly exciting times!

« We’re truly making astrophysics great again!!!
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