Detection rates for GW170817-like events with ZTF and LSST

Eric Bellm

University of Washington ZTF Survey Scientist Alert Production Science Lead, LSST Data Management

Why haven't we seen GW170817 before?

Photometry for GW170817

Why haven't we seen GW170817 before?

Transient surveys have been scanning the sky.

Transient surveys have been scanning the sky.

GW detectors not always online

find events below GW trigger thresholds

understand diversity of events

[sometimes] probe beyond GW detector horizon

understand astrophysical contaminants

Optical survey cameras are increasing in capability.

Optical survey cameras are increasing in capability.

ZTF will survey more than an order of magnitude faster than PTF.

PTF & iPTF

36 sec

readout

250 deg²/hr $m_{lim} = 20.7,$ $t_{exp} = 60 \text{ sec}$

Palomar 48-inch Schmidt

7.25 deg² field of view

3750 deg²/hr $m_{lim} = 20.4,$ $t_{exp} = 30$ sec

47 deg² field of view

10 sec readout

The Large Synoptic Survey Telescope will conduct an unprecedented time-domain survey.

An automated 8.4 meter telescope that for 10 years will image half the sky every ~3 days, generate ~50 PB of (raw) imaging data, issue real-time alerts to any changes in the sky (~10 million/night), measure properties of ~40 billion objects in the sky (~1000 times each), and <u>make the results available</u> in a web-accessible database.

First Light: Operations:

Scolnic+ simulated untriggered detection rates of GW170817-like kilonovae.

THE ASTROPHYSICAL JOURNAL LETTERS, 852:L3 (7pp), 2018 January 1 © 2017. The American Astronomical Society. All rights reserved. https://doi.org/10.3847/2041-8213/aa9d82

How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?

D. Scolnic¹, R. Kessler¹, D. Brout², P. S. Cowperthwaite³, M. Soares-Santos^{4,5}, J. Annis⁴, K. Herner⁴, H.-Y. Chen¹,

			-	_		
Survey	Filters	Depths $(5\sigma \text{ mag})$	Cadences ^a (Days)	Area ^b (Deg ²)	Duration ^c (Years)	Citation ^d
SDSS	ugriz	21.8, 22.9, 22.5, 22.	2.2, 2.2, 2.2, 2.2	300	2	Frieman et al. (2008)
SNLS	griz	26.1, 25.4, 24.8, 23.8	8.8, 6.3, 5.3, 8.5	4	5	Astier et al. (2006)
PS1	griz	23.4, 23.2, 23.4, 22.8	8.8, 8.7, 8.2, 6.3	70	4	Scolnic et al. (2014)
DES	griz	24.0, 23.9, 23.7, 23.5	6.8, 6.4, 6.3, 6.5	27	5	Kessler et al. (2015)
ASAS-SN	V	17.5	2	15000	5	Shappee et al. (2014)
SMT	gr	20.6, 20.4	17.4, 14.9	11000	5	Scalzo et al. (2017)
ATLAS	со	20.3, 20.3	1.3, 1.3	11000	5	Tonry (2011)
ZTF	gr	20.5, 20.5	3.0, 3.0	15000	5	Bellm (2014)
LSST DDF	ugrizy	24.8, 25.4, 25.6, 25.1, 24.7, 23.3	5, 6, 7, 7, 7, 7	40	10	LSST Science Collaboration et al. (2009)
LSST WFD	ugrizy	23.2, 24.8, 24.5, 23.8, 22.5, 21.7	30, 35, 18, 19, 21, 18	18000	10	LSST Science Collaboration et al. (2009)
WFIRST	RZYJHF	26.2, 25.7, 25.6, 25.5, 25.4, 24.9	5, 5, 5, 5, 5	45	2	Hounsell et al. (2017)

 Table 1

 Summary Information for Each Survey

Current and future surveys should find kilonovae.

Expected Number of KNe Found in Each Sample							
Survey	# KNe ^a	Survey Years	KN Redshift Range				
SDSS	0.13	2	0.02-0.05				
SNLS	0.11	4	0.05-0.20				
PS1	0.22	4	0.03-0.11				
DES	0.26	5	0.05-0.20	_			
ASAS-SN	< 0.001	3		#/year			
SMT	0.001	5	0.01-0.01				
ATLAS	8.3	5	0.01-0.03	1.7			
ZTF	10.6	5	0.01-0.04	2.1			
LSST WFD	69	10	0.02-0.25	6.9			
LSST DDF	5.5	10	0.05-0.25	0.5			
WFIRST	16.0	2	0.1–0.8	8.0			

Table 1

Note.

^a Total for the entire duration of the survey.

The detection criteria may be optimistic.

We simulate KN detections in two steps. The first step is the trigger simulation, requiring two detections that are separated by at least 30 minutes to reject asteroids. A detection is characterized by the efficiency versus signal-to-noise ratio (S/N), and the efficiency is typically 50% at S/N = 5. The second step is the analysis, which uses the following selection requirements designed to reject supernova backgrounds.

- 1. At least two filter bands have at least one observation with S/N > 5. This requirement is largely redundant with the trigger.
- 2. The time period when transient measured with S/N > 5 is less than 25 days (30 days for *WFIRST*).
- 3. There is at least one observation within 20 days prior to the first S/N > 5 observation.
- 4. There is at least one observation within 20 days after the last S/N > 5 observation.

The second requirement explicitly rejects long-lived light curves. The last two requirements reject events that peak before or after the survey time window.

ZTF will conduct several simultaneous surveys.

Public (40%)

all-sky 3-day cadence (18k deg²+) nightly Galactic Plane

(both surveys take one g and one r exposure per field when observed)

Collaboration (40%)

high cadence (3400 deg²) 5-day cadence i-band (11700 deg²) other Galactic Plane & asteroid surveys

Caltech (20%) rotating TAC-allocated programs

public survey cadence

Simulations with the production scheduler provide useful cadence estimates.

We used realistic ZTF observing simulations to generate kilonova lightcurves.

ZTF could discover about 1 kilonova per year.

Requiring at least 1 detections of SNR > 5: 3.1 events/year

Requiring at least 3 detections of SNR > 5: **1.3 events/year**

LSST will *detect* many kilonovae, but cadence may hinder *discovery*.

Upcoming sky surveys should detect a few-tens of kilonovae without a GW trigger

The observation cadence will strongly influence whether we can recognize and follow these up in real time.