Hydrodynamic stability of neutron star cores

Anthony van Eysden & Bennett Link

Why study stability?

What is the underlying state of a spinning-down neutron star?

Turbulence may be connected with timing noise (random fluctuations in pulsar spin frequency)

see e.g., Melatos & Peralta, Link (2012a,b), Melatos & Link (2014)

Proposed as cause of glitches (impulsive increase in spin frequency)

see e.g., Glampedakis & Anderson (2009)

Neutron star hydrodynamics

Superfluidity and superconductivity

- Arrays pin due to magnetic forces

Spin-down equilibrium

Rotational lag develops between neutrons and protons

No magnetic field: two-stream instabilities

Rerfect pinning: Glampedakis & Andersson (2009)

Inertial modes coupled by mutual friction produce twostream instabilities

↔ What about magnetic fields?

Kelvin-Helmholtz instability

Kelvin Helmholtz instability

Add transverse field

Kelvin Helmholtz instability

↔ What about parallel field

 \bigcirc Stabilized for Alfven speed, $v_A > v_1 - v_2$

Magnetic field structure

Real Pure dipole field is unstable (Flowers and Ruderman '77)

Braithwaite and Spruit (2004)

- Only known stable configuration is the twisted torus
- Toroidal field at least equal to dipole field for stability

Bulk two-stream instability

Refectly pinned flux tubes and vortices

 \bigcirc Growth time ~ 1/(Ω_n - Ω_p) ~ s (Glampedakis and Andersson 2009)

What about magnetic fields?

Add poloidal (dipole field), what happens?

R No effect!

What about magnetic fields?

↔ What about toroidal field?

- ↔ Stabilized for Alfven speed, $v_A > v_n v_p$
- \bigcirc Corresponds to B=10¹⁰ G --> stable!

Imperfect pinning

Vortices excited by thermal fluctuations overcome pinning barriers – vortex slippage (Link 2014)

Additional class of instabilities arise

- Slower growth rates (days) timing noise?(Link 2012, Andersson et al 2013)
- Also stabilized by the magnetic field

Other unstable modes?

- - Relative flow for instability unrealistically high (e.g., Andersson et al. 2004)
- Reference (Fermi-liquid coupling)?
 - No instabilities in expected range of entrainment parameter (e.g., Andersson et al. 2004)

- - Weakly unstable thermal g-modes in young neutron stars (e.g., Gusakov and Kantor 2013, Passamonti et al. 2016)

Conclusions

Outer core is stable in garden variety spinning down isolated neutron stars

Turbulence unlikely to be responsible for timing irregularities in these objects