

Superfluid Density of Neutrons in the Inner Crust of Neutron Stars:

New Life for Pulsar Glitch Models

GW & C. J. Pethick, PRL **119**, 062701 (2017).

PROGRAM OF GLOBAL EXPERTS

Gentaro Watanabe (Zhejiang Univ.)

Introduction

Superfluid density

Landau's two-fluid description of supefluids:

normal component: $n^n(T)$ $v_n(T)$ superfluid component: $n^s(T)$ $v_s(T)$

Superfluid density n^s : Density which contributes to SF flow.

Response of current to the phase twist of SF order parameter.

$$\Delta(\mathbf{r}) = \tilde{\Delta}(\mathbf{r})e^{2\mathrm{i}\mathbf{Q}\cdot\mathbf{r}}$$

Glitch model based on n-superfluidity <u>2 fluids in NS crust</u>

dripped neutrons: superfluid 📫 quantized vortices

nuclei (form a lattice): { normal fluid is pinning center of vortices charged is coupled to a EM field

decelerated by pulsar emission

Glitch model based on n-superfluidity

pinning/unpinning of vortices of n-superfluid

n-sf: angular mom. reservoir

Crisis of the glitch models

Chamel, PRC 85, 035801 (2012)

Band calculation without pairing.

(HF with nuclear interaction of Skyrme type)

Good approx. if the effect of pairing is weak.

Mom. of inertial of n-superfluid is too small.

Andersson et al., PRL (2012); Chamel, PRL (2013); Delsate et al., PRD (2016).

GW & Pethick, PRL 119, 062701 (2017).

Difficulty of the problem

 $\xi_{BCS} \sim R$ (nuclear radius)

Hydrodyn. theory is invalid.

Need to look at the band structure in detail.

of neutrons / nucleus >> 1
neutrons occupy ~500 bands

Both "gaps" are important!

(band gap) vs (pairing gap)

Pairing drastically reduces the effects of band gap when

 $|\Delta| \gtrsim$ (lattice potential height)

 $\Delta | / (\text{band gap}) |$

matters even though $|\Delta|/E_F \ll 1$

Superfluid density may be large enough to account for glithces.

New life for glitch models!

GW & Pethick, PRL **119**, 062701 (2017).

Scattering of quasiparticles by spin-indep. pot.:

$$H_{\text{int}} = \sum_{\mathbf{k},\mathbf{k}',\sigma} V(|\mathbf{k} - \mathbf{k}'|) a_{\mathbf{k},\sigma}^{\dagger} a_{\mathbf{k}',\sigma}$$

$$a_{\mathbf{k},\sigma}^{\dagger} = u_k \alpha_{\mathbf{k},\sigma}^{\dagger} + \sigma v_k \alpha_{-\mathbf{k},-\sigma}$$
fermion quasiparticle
$$\langle \mathbf{k}'\sigma | H_{\text{int}} | \mathbf{k}\sigma \rangle = \underbrace{(u_k u_{k'} - v_k v_{k'})}_{\text{coh. factor}} V(|\mathbf{k} - \mathbf{k}'|)$$

$$|\mathbf{k}\sigma \rangle = \alpha_{\mathbf{k},\sigma}^{\dagger} | 0 \rangle$$
the Formi surface (k = [2mu]^{1/2}), w_k = w_k = 1/\sqrt{2}

On the Fermi surface ($k = [2m\mu]^{1/2}$), $u_k = v_k = 1/\sqrt{2}$ $\langle \mathbf{k}' \sigma | H_{int} | \mathbf{k} \sigma \rangle = 0$

No net scattering on Fermi surface.

∵ Potential for particles and holes are equal and opposite.

Simple analysis by 2-band model

- p: quasimom. of a quasiparticle (in units of p_F)
- K: reciprocal lattice vector (in units of p_F)
- V: strength of the lattice pot. (in units of $2E_F$)
- Δ : pairing gap (in units of $2E_F$)

Nested case: K = 2

Eigenvalues @ $p=p_F$: $\pm \sqrt{\Delta^2 + V^2}$ (doubly degenerate)

 $|\Delta|/|V| \gtrsim 1$ \implies Pairing effect is important even if $|\Delta|/E_F \ll 1$

Bogoliubov-de Gennes approach

Basic equation (BdG eq.):

$$\begin{pmatrix} \tilde{H}'_{\mathbf{Q}}(\mathbf{r}) & \tilde{\Delta}(\mathbf{r}) \\ \tilde{\Delta}^*(\mathbf{r}) & -\tilde{H}'_{-\mathbf{Q}}(\mathbf{r}) \end{pmatrix} \begin{pmatrix} \tilde{u}_i(\mathbf{r}) \\ \tilde{v}_i(\mathbf{r}) \end{pmatrix} = \epsilon_i \begin{pmatrix} \tilde{u}_i(\mathbf{r}) \\ \tilde{v}_i(\mathbf{r}) \end{pmatrix}$$

Q : quasimom. per particle of superflow

$$\tilde{H}'_{\mathbf{Q}}(\mathbf{r}) = \frac{1}{2m} (-\mathrm{i}\mathbf{\nabla} + \mathbf{Q} + \mathbf{k})^2 + V_{\mathrm{ext}}(\mathbf{r}) - \mu$$

1D sinusoidal pot.

$$V_{\rm ext}(\mathbf{r}) = V_K(e^{iKz} + e^{-iKz})$$

Calculate

$$n_{ij}^s = m \frac{\partial \mathcal{E}(n, \mathbf{Q})}{\partial Q_i \partial Q_j}$$

Effects of the pairing gap (1)

Reduction of *n^s* due to band gap is suppressed by paring gap.

12

Effects of the pairing gap (2)

Suppression of band gap effect by pairing

Application to NS crusts

<u>Obstacles:</u>

- Lattice pot. in NS crusts has many Fourier components.
- Neutrons occupy ~ 500 bands.
- 3D lattice: average over the orientation of lattice is needed.

Direct BdG approach is formidable.

Take a shortcut!

Superfluid density in NS crusts

Assumption: pairs of RLVs $\{\mathbf{K}_i, -\mathbf{K}_i\}$ contribute to n^s independently.

$$n_{ij}^s(\mathbf{K}) = n_{zz}^s \hat{K}_i \hat{K}_j + n[\delta_{ij} - \hat{K}_i \hat{K}_j]$$

longitudinal

transverse

$$\frac{n^s}{n_n^o} \approx \exp\left\{-\frac{2n_n^o}{n_N}\int_0^1 x^2 dx \left[1 - \frac{n_{zz}^s(K, V_K, \Delta)}{n}\right]\right\}$$

effect of lattice pot. $1 - \frac{n_{zz}^{s}(K, V_{K}, \Delta)}{n} \approx \left[1 - \frac{n^{s}(K, V_{K}, \Delta = 0)}{n}\right] \frac{1}{\sqrt{1 + (\Delta/|V_{K}|)^{2}}}$ $x \equiv K/2k_{n}$ K - dep. K - dep.

Superfluid density in NS crusts

Focus on the case where the reduction of n^s is largest.

In Chamel (2012): Avr. density $n = 0.03 \text{ fm}^{-3}$ neutron Fermi energy $E_F^o = 16.4 \text{ MeV}$ $\Delta \approx 1 - 1.5 \text{ MeV}$

No pairing limit ($\Delta = 0$): $n^s/n_n^o \simeq 0.20$ (cf. Chamel's result ~ 0.1)

 Δ = 1MeV: $n^s/n_n^o \simeq 0.64$

 Δ = 1.5MeV: $n^s/n_n^o \simeq 0.71$ Only 29% reduction!

Superfluid density is large enough.

Glitch models based on superfluidity are still tenable!

16

Summary & conclusion

Study of neutron superfluid density in neutron star crusts

Both pairing gap and band gap are imporant.

 $|\Delta|/(\text{band gap})$ matters rather than $|\Delta|/E_F$

Effects of the band gap is suppressed in NS crusts.

No pairing

Pairing included

Pulsar glitch models get new life!

GW & Pethick, PRL 119, 062701 (2017).

K and V_K dependence in normal limit

Normal limit: $\Delta = 0$; for sinusoidal pot.

Approximate fit: $1 - n_{zz}^s(K, V_K, \Delta = 0)/n = \left(1 + 3.5 \frac{K}{2k_F}\right) \frac{|V_K|}{E_F}$

Form factor of lattice pot. in NS crusts

Fourier transform of MF pot. in Chamel's calculation.

Reciprocal lattice vectors (RLVs) bcc lattice \rightarrow fcc in reciprocal space Min: $\mathbf{K} = \frac{4\pi}{d}(\pm 1, \pm 1, 0)$ etc. (12 RLVs) $K_{\min}/2k_n \simeq 0.12$ **2nd:** $\mathbf{K} = \frac{4\pi}{d}(\pm 2, 0, 0)$ etc. (6 RLVs) $K = \sqrt{2}K_{\min}$ 3rd: $\mathbf{K} = \frac{4\pi}{d}(\pm 1, \pm 1, \pm 2)$ etc. (24 RLVs) $K = \sqrt{3}K_{\min}$

 $\begin{aligned} |V_{\mathcal{K}}| \text{ decreases rapidly with } \mathcal{K}. \\ K/2k_n \gtrsim 0.15 \quad \Longrightarrow \quad |V_{\mathcal{K}}| \lesssim \Delta \\ K/2k_n \gtrsim 0.25 \quad \longmapsto \quad |V_{\mathcal{K}}| \ll \Delta \end{aligned}$

Superfluid density in NS crusts (1)

Assumption: pairs of RLVs $\{\mathbf{K}_i, -\mathbf{K}_i\}$ contribute to n^s independently.

