Resonant Shattering Flares: Multimessenger Probes of Neutron Star Physics

David Tsang (U. Southampton)

GW/EM170817 - A Golden Binary

Troja+, 2017

LVC + Fermi, 2017

Metzger & Berger (2011)

GWs can provide tidal constraints

But, kNe & SGRBs don't
tell us much about NS
structure

Only (messy) post merger physics

r-process

∃ M_{ejecta}

Mad Max: Fury Road (2015)

- GWs can provide tidal constraints
- But, kNe & SGRBs don't tell us much about NS structure
- Only (messy) post merger physics
 - r-process

] M_{ejecta}

Mad Max: Fury Road (2015)

GWs can provide tidal constraints

But, kNe & SGRBs don't tell us much about NS structure

Only (messy) post merger physics

r-process

] M_{ejecta}

RSFs are bright, isotropic EM counterparts that can provide detailed asteroseismic constraints on NS physics

Tidal Resonance

- Tidal Resonance can transfer huge amounts of energy from orbit to modes
- Need a mode that:
 - strains the crust
 - couples to the tidal field (I=2, spheroidal)
 - hits a resonance well before merger (f < 1 kHz)

Tidal Resonance

- Tidal Resonance can transfer huge amounts of energy from ${\bullet}$ orbit to modes
- Need a mode that:
 - strains the crust
 - couples to the tidal field (I=2, spheroidal)

💵 T-Mobile 🗢

Message

Message in **#general**

Do neutron star solids change the response to dynamical tides ?

• •

💵 T-Mobile 🗢

 \leftarrow

Message

Message in **#general**

Do neutron star solids change the response to dynamical tides ?

The i-mode exists because of the solid-fluid transition. The frequency depends on the core-crust transition radius and shear speed...

- ERSF ~ 10^{47} 10^{49} erg, Δt_{RSF} ~ 0.1s
- RSF model can be easily tested with EM/GW coincident timing
 - Predicts weak GRB-like emission seconds <u>before</u> the chirp coalescence

- ERSF ~ 10^{47} 10^{49} erg, Δt_{RSF} ~ 0.1s
- RSF model can be easily tested with EM/GW coincident timing
 - Predicts weak GRB-like emission seconds <u>before</u> the chirp coalescence
 - The timing of the RSF provides precision asteroseismology of the NS i-mode

. . **.** . .

- $E_{RSF} \sim 10^{47} 10^{49} \text{ erg}, \Delta t_{RSF} \sim 0.1 \text{ s}$
- RSF model can be easily **tested** with EM/GW coincident timing
 - Predicts weak GRB-like emission seconds <u>before</u> the chirp coalescence
 - The timing of the RSF provides precision asteroseismology of the NS i-mode

- $E_{RSF} \sim 10^{47} 10^{49} \text{ erg}, \Delta t_{RSF} \sim 0.1 \text{ s}$
- RSF model can be easily tested with EM/GW coincident timing
 - Predicts weak GRB-like emission seconds <u>before</u> the chirp coalescence
 - The timing of the RSF provides precision asteroseismology of the NS i-mode
 - i-mode frequency dependent on EOS, NS bulk properties and shear velocity at base of the crust
 - Constrains nuclear physics? (Symmetry energy, EOS...)

Gourgouliatos & Hollerbach (2018)

- NS Surface B-field determines max luminosity
- Surface B-field depends on initial conditions, age, toroidal field, accretion history, core flux vs crust Only (see e.g. Ho, Andersson, & Graber [2017])
- Do not expect bright RSFs for all NS
 - e.g. RSF not seen in GW170817

How detectable are EM counterparts?

(kNe detectability from Kalsiwal & Nissanke, 2014)

(kNe detectability from Kalsiwal & Nissanke, 2014)

SGRB Precursors

Potential Orphan RSFs?

 $E_{RSF} \sim 10^{47}$ - 10^{49} erg, $t_{RSF} \sim 0.1$ s

GRB	T ₉₀ (s)	Z	BAT Fluence (10 ⁻⁷ erg	Еват iso (erg)	Notes
150101B	0.018	0.13	0.23	2.6 x 10 ⁴⁸	High E _{kin} ; Fong+ (2016)
050509B	0.073	0.225	0.09	1.1x10 ⁴⁸	Gehrels+ (2005)
060502B	0.131	0.287	0.4	7.9x10 ⁴⁸	Bloom+ (2006)
050906	0.128	0.031*	0.07	1.5 x 10 ⁴⁶	Levan & Tanvir (2008)

*no afterglow; host galaxy within BAT error box

Q: Is there a local orphan RSF component in SGRB population? (see e.g. Tanvir [2005])

Troja et al. ApJ, 723, 1711 (2010)

Black Hole - Neutron Star Mergers

DT et al. (in prep)

Summary

- RSFs caused by resonant tidal excitation of i-mode injecting energy into pair-fireball, seconds before merger
- RSFs are:
 - Isotropic
 - Bright: should be easily detectable within the LIGO horizon
 - $E_{RSF} \sim 10^{47} 10^{49} \text{ ergs}$
 - $t_{RSF} \sim 0.1 s$
- Can appear as SGRB precursors or orphan RSFs (underluminous, very short GRBs)

- Weak X-ray/Optical/Radio afterglow
- Coincident EM/GW timing will confirm RSF model and determine mode freq.
- Shear speed/nuclear physics constraints; Complementary to M, R, λ
- Does not need tidal disruption larger fraction of NS-BH mergers

Questions

- Surface B-field core vs crust evolution?
- N_{RSF}/N_{merger}?

- Excess of nearby orphan RSFs? Injection tests for burst pipelines?
- How do the core-crust transition density and (effective) shear modulus/speed depend on nuclear physics parameters? (model dependence?) Pasta layer thickness?
- What constraints on NS EOS and dense matter can we obtain with i-mode frequency from coincident timing?

kNe (Bright)

Questions

- Surface B-field core vs crust evolution?
- N_{RSF}/N_{merger}?

- Excess of nearby orphan RSFs? Injection tests for burst pipelines?
- How do the core-crust transition density and (effective) shear modulus/speed depend on nuclear physics parameters? (model dependence?) Pasta layer thickness?
- What constraints on NS EOS and dense matter can we obtain with i-mode frequency from coincident timing? Steiner & Watts, (2009), PRL, 103, 181101

