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Mo#va#on
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Present theoretical predictions for nuclear systems are limited by:

Ø our understanding of nuclear interactions, 
Ø and our ability to reliably calculate these strongly interacting systems.

Simonis et al., PRC (2016)

For nucleonic matter and nuclei, we need a consistent approach with: 

Ø a systematic theory for strong interactions
Ø advanced many-body methods
Ø controlled theoretical uncertainty estimates.

Drischler et al.,PRC (2016) Gandolfi, Carlson, Reddy, PRC (2012)
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Outline
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Ø What are the fundamental interactions that govern strongly interacting matter? 
Chiral effective field theory:
• Systematic basis for nuclear forces, naturally includes many-body forces.
Quantum Monte Carlo methods.

Ø How does subatomic matter organize itself?
Results of Quantum Monte Carlo calculations with chiral interactions
• for neutron matter,
• for light to medium-mass nuclei.

Ø How can we understand astrophysical phenomena?
Results for astrophysical applications:.
• Neutron-star equation of state and structure.
• Neutron-star mergers

Ø Summary

e.g. Epelbaum et al., PPNP (2006) and RMP (2009) 
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Chiral effec+ve field theory for 
nuclear forces
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Quantum Chromodynamics 
(QCD)

Nuclear Physics (EOS, nuclei)
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Chiral effective field theory for 
nuclear forces
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Weinberg, van Kolck, Kaplan, Savage, Wise, 

Epelbaum, Kaiser, Machleidt, Meißner, Hammer ...

Systematic expansion of nuclear forces:

Ø Pions and nucleons as relevant 

degrees of freedom

Ø Power counting scheme

Ø Operators constrained by symmetries

of QCD, short-range physics captured in 

set of low-energy couplings

Ø Natural hierarchy of nuclear forces

Ø Can work to desired accuracy with 

systematic error estimates 

Ø Fitting: NN forces in NN system (NN 

phase shifts), 3N forces in 3N/4N 

system (Binding energies, radii)
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Chiral effec+ve field theory for 
nuclear forces
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Many-body forces:

Ø Natural hierarchy of nuclear forces

Ø Crucial for nuclear physics

Ø Consistent interactions: Same 
couplings for two-nucleon and many-
body sector

Coraggio, Holt, Itaco, Machleidt, Marcucci, Sammarruca, 
PRC (2014)
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Chiral effective field theory for 
nuclear forces
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Epelbaum et al., Eur. Phys. J (2015)

Systematic expansion of the nuclear forces: 
Ø Can work to desired accuracy 
Ø Can obtain systematic error estimates 
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Quantum Monte Carlo method
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Cast many-body Schrödinger equation as diffusion equation:

Basic steps: 

Ø Choose trial wavefunction which overlaps with the ground state

Ø Evaluate propagator for small timestep Δ", in practice only for local potentials

Ø Make consecutive small time steps using Monte Carlo techniques to project out 
ground state

| (R, 0)i = | T (R, 0)i =
X

i

ci|�ii !
X

i

cie
�(Ei�E0)⌧ |�ii

| (R, 0)i ! |�0i for ⌧ ! 1

More details:
Carlson, Gandolfi, Pederiva, Pieper, Schiavilla, Schmidt, Wiringa, RMP (2015)

| T (R, ⌧)i! |�0i for ⌧ ! 1

lim
⌧!1

e�H⌧ | T i ! | 0i
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Quantum Monte Carlo method
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Lynn, IT, Carlson, Gandolfi, Gezerlis, Schmidt, Schwenk, PRC (2017)

4He

Very precise method for strongly interacKng systemsØ .
ManyØ -body uncertainty is staKsKcal.
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Results
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Excellent description of binding energies and charge radii for A ≤16.

Recent results for Quantum Monte Carlo calculations of nuclei:

Lonardoni et al., arXiv:1709.09143 and 1802.08932



Results
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AFDMC

Ø Chiral interactions at N2LO simultaneously reproduce the properties of A≤16 systems
and of neutron matter (uncertainty estimate as in ).

Ø Uncertainty from nuclear interactions grows fast with density and limits applicability
of nuclear ab initio calculations.

E. Epelbaum et al, EPJ (2015)

IT, Carlson, Gandolfi, Reddy, arXiv:1801.01923

Neutron matter

Lynn, IT, et al., PRL (2016)

n-" scattering



Results
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Ø Good agreement between various microscopic approaches to neutron matter.

Ø Uncertainty originates mainly in many-body interactions.

IT, La?mer, Ohnishi, Kolomeitsev, 
ApJ. (2017)
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EOS for asymmetric matter
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Drischler et al., 
PRC (2016)

MBPT
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Neutron Star EOS
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Ø Extend results to beta equilibrium (small Ye,p) and include crust EOS
Ø Extend to higher densities, e.g.,

• using piecewise polytropic expansion

• using speed-of-sound

• Meta-EOS based on empirical parameters
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Hebeler et al., PRL (2010) and APJ (2013) 

IT, Carlson, Gandolfi, Reddy, arXiv:1801.01923

Margueron et al., PRC 97, 025805 & 025806 (2018)

IT, Carlson, Gandolfi, Reddy, arXiv:1801.01923Hebeler et al., ApJ (2013)



Extension using speed of sound
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Kurkela et al. (2010)
Bedaque & Steiner (2015)

lim
n!1

c2S =
1

3

sketch

Use the speed of sound to extend EOS:

Assume some general form for speed Ø
of sound above transiHon density, e.g. 
Gaussians, linear segments, etc.

Sample many different curves and Ø
reconstruct EOS.

Can easily include Ø phase transiHons.

Loose informaHon on degrees of Ø
freedom.

Speed of sound:

c2S =
@p(✏)

@✏

IT, Carlson, Gandolfi, Reddy, arXiv:1801.01923

ntr



Meta-EOS based on the nuclear 
empirical parameters (MM)
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APR, PRC (1998)

Typically, extrapolation to asym. nucl. matter from sym. nucl. 
matter:

with

esat(n) = Esat +
1

2
Ksatx

2 +
1

6
Qsatx

3 +
1

24
Zsatx

4 + ...

esym(n) = Esym + Lsymx+
1

2
Ksymx2 +

1

6
Qsymx3 +

1

24
Zsymx4 + ...

E

A
(n, �) ⇡ esat(n) + esym(n)�2 + esym,4(n)�

4 + ...

Some empirical parameters are not well constrained by nuclear physics experiments: 
Ø Generate uncertainties in the extrapolation to high density and large isospin asymmetry.
Ø The impact of these uncertainties on the nuclear EOS are determined from a meta-modelling.

Large uncertaintiesSmall uncertainties

Margueron, Casali, Gulminelli, PRC 97, 025805 & 025806 (2018)

Esym



Assumptions
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IT, Carlson, Gandolfi, Reddy, arXiv:1801.01923

Generate thousands of EOSs that:

Ø Are consistent with low-density results from chiral effective field theory up to 1-2 n0.

Ø Are causal (cS
2≤1) and stable (cS ≥ 0 inside neutron stars).

Ø Support 1.9 solar-mass neutron stars.



Comparison of models: n
tr
=n

0
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Chiral EFT constraint up to satura9on density:

Good agreement of different models!Ø
Different degrees of generaliza9onØ : from nuclear degrees of freedom (black band) up to 

very general model with regions of soGening and phase transi9on, etc.

April 17, 2018

IT, Margueron, Reddy, arXiv:1804.0273



Comparison of models: ntr =2n0
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IT, Margueron, Reddy, arXiv:1804.0273

Chiral EFT constraint up to two times saturation density:
Ø Good agreement of different models!
Ø Different degrees of generalization: from nuclear degrees of freedom (black band) up to 

very general model with regions of softening and phase transition, etc.

April 17, 2018



Extension using speed of sound
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Varying transition density ntr and using for n > ntr:

See also Bedaque & Steiner (2015)

c2S =
1

3
� c1 exp

✓
� (n� c2)2

n2
BL

◆
(c1 & c2 fit at ntr)
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IT, Carlson, Gandolfi, Reddy, arXiv:1801.01923



Extension using speed of sound
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Allow speed of sound to vary between 0 and 1:

See also Bedaque & Steiner (2015)

April 17, 2018

IT, Carlson, Gandolfi, Reddy, arXiv:1801.01923



Constraint from GW170817
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GW170817 provides constraints on the tidal polarizability (ntr = n0):

Ø Constrains the radius of a typical neutron star to be less than 13.6 km.

CSM MM

April 17, 2018

See also Annala et al., Most et al.
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Study GW170817:
Ø Obtain tidal polarizabilities using mass distributions of GW170817.
Ø We do not include prior on !Λ from LIGO observation!

LIGO/VIRGO collaboration, PRL (2017)

Predictions based on GW170817 
posterior for NS masses

April 17, 2018
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Study GW170817:
Obtain 3dal polarizabili3es using mass distribu3ons of GW170817.Ø
We do not include prior on Ø !Λ from LIGO observa3on!

LIGO/VIRGO collaboration, PRL (2017)

Predictions based on GW170817 
posterior for NS masses

April 17, 2018



Ingo Tews 24

‘Trust’ nuclear physics up to saturation density:

Ø Large range of tidal polarizabilities allowed, depending on freedom in 

high-density models: 60-2170 (CSM) and 260-1060 (MM)

Ø In this case, GW170817 provides constraints for the EOS.

Predictions based on GW170817 

posterior for NS masses: n
tr
=n

0

cS extension

April 17, 2018

IT, Margueron, Reddy, arXiv:1804.0273
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‘Trust’ nuclear physics up to saturation density and enforce !Λ ≤ 800:
Ø Large range of tidal polarizabilities allowed, depending on freedom in 

high-density models
Ø In this case, GW170817 provides constraints for the EOS.

Predictions based on GW170817 
posterior for NS masses: ntr=n0

cS extension

April 17, 2018

IT, Margueron, Reddy, arXiv:1804.0273
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Predictions based on GW170817 
posterior for NS masses: ntr=2n0

‘Trust’ nuclear physics up to two times saturation density:

Ø Range of tidal polarizabilities drastically reduced, consistent for different 

high-density models: 80-570 (CSM) and 260-500 (MM)

Ø EOSs fully consistent with GW170817 without information on Λ.

cS extension

April 17, 2018

IT, Margueron, Reddy, arXiv:1804.0273
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Predictions based on GW170817 
posterior for NS masses: ntr=2n0

‘Trust’ nuclear physics up to two times saturation density:

Ø Range of tidal polarizabilities drastically reduced, consistent for different 

high-density models: 80-570 (CSM) and 260-500 (MM)

Ø EOSs fully consistent with GW170817 without information on Λ.

April 17, 2018

IT, Margueron, Reddy, arXiv:1804.0273



Maximum mass vs. tidal polarizability
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Maximum mass of the EOS vs. combined tidal polarizability.
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Summary
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Ø QMC calculations of matter and nuclei with local chiral 
potentials including NN and 3N forces are a versatile 
and systematic approach to ab initio calculations of 
nuclei and matter.

Ø Chiral interactions at N2LO simultaneously reproduce 
the properties of A≤16 systems and of neutron matter, 
commonly used phenomenological 3N interactions fail.

Ø There is a sizable uncertainty for nuclear interactions.

Ø Systematic high-density extension needed for reliable 
study of astrophysical phenomena:

Ø Nuclear physics input between 1-2 n0 will be directly 
probed in merger observations. 

Ø Further improvements necessary to calculate nuclei and 
neutron-matter EOS with improved uncertainties.

April 17, 2018
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Thank you for your attention.

Thanks
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