Southampton

Andreas Schmitt

Mathematical Sciences and STAG Research Centre University of Southampton Southampton SO17 1BJ, United Kingdom

(Color-)magnetic flux tubes in dense matter

A. Haber, A. Schmitt, PRD 95, 116016 (2017); EPJ Web Conf. 137, 09003 (2017)
 A. Haber, A. Schmitt, arXiv:1712.08587 [hep-ph]

- two-component superconductors: unconventional type-I/type-II behavior (flux tube clusters)
- flux tubes and domain walls in superconducting quark matter

Reminder: type-I/type-II superconductivity

Two-component superconductors

• Ginzburg-Landau potential for two complex scalar fields with electric charges q_1 , q_2 (neutron/proton: $q_1 = 2e, q_2 = 0$)

$$U = \frac{\mathbf{B}^2}{2} + \sum_{i=1,2} \left[|(\nabla + iq_i \mathbf{A})\phi_i|^2 - \mu_i^2 |\phi_i|^2 + \lambda_i |\phi_i|^4 \right] + 2h|\phi_1|^2 |\phi_2|^2$$

- further extensions:
 - derivative coupling ("entrainment")
 M. G. Alford, G. Good, PRB 78, 024510 (2008)
 A. Haber, A. Schmitt, PRD 95, 116016 (2017)
 - color superconductor: 3 scalar fields ϕ_1 , ϕ_2 , ϕ_3 and 3 gauge fields A. Haber, A. Schmitt, arXiv:1712.08587 [hep-ph]

Two-component superconductors in neutron star cores

- \bullet density-dependent κ
- type-I/type-II transition in the core?
- effect of coupling to superfluid on type-I/type-II transition?

Critical magnetic fields in a two-component system

• compute flux tube profiles and flux tube interaction \rightarrow attractive long-distance interaction in type-II regime

numerical calculation supports conjecture A. Haber, D. Müller, preliminary results

• first-order phase transition allows for flux tube clusters see also "type-1.5" superconductors J. Carlström, J. Garaud, E. Babaev, PRB 84, 134515 (2011)

Quark matter in a magnetic field

- color-superconducting quark matter in a magnetic field
- use perturbative results for Ginzburg-Landau parameters μ, λ, h

strong coupling constant g

Magnetic defects in CFL can be superfluid vortices and magnetic flux tubes at the same time!

CFL line defects	(n_1, n_2, n_3)	$\Gamma\left[\pi/3\mu_q\right]$	$\Phi_3 \left[\pi/g ight]$	$ ilde{\Phi}_8 \left[\pi / ilde{g}_8 ight]$
Global vortex Forbes, Zhitnitsky (2002)	(n, n, n)	-n	0	0
"Semi-superfluid" vortex Balachandran, Digal, Matsuura (2006)	(0, 0, n)	$-\frac{n}{3}$	0	$\frac{2n}{3}$
Magnetic flux tube T_{112} Iida (2005)	(n, n, -2n)	0	0	-2n
Magnetic flux tube T_{101} Haber, Schmitt (2017)	(n,0,-n)	0	-n	-n

• winding numbers n_1 , n_2 , n_3 for three scalar fields

baryon circulation $\Gamma \propto n_1 + n_2 + n_3$ (color-)magnetic flux $\tilde{\Phi}_8 \propto n_1 + n_2 - 2n_3$

• photon/gluon mixing: Meissner effect for $\tilde{B}_8 = B_8 \cos \theta + B \sin \theta$

Flux tube profiles

• flux tube with "unpaired core"

flux tube with "2SC core"
→ additional B₃ field (cost in free energy)
→ non-vanishing condensate in core (gain in free energy)

Phase diagram including flux tubes

- in neutron stars $\mu_q \simeq 400 \,\mathrm{MeV} \Rightarrow g \simeq 3.5$
- weak-coupling methods and phenomenological models: $T_c \simeq (10 - 50) \,\mathrm{MeV}$

- type-II regime for sufficiently large T_c/μ_q
- type-I/type-II transition complicated (multi-component structure!)

Phase diagram including flux tubes

- in neutron stars $\mu_q \simeq 400 \,\mathrm{MeV} \Rightarrow g \simeq 3.5$
- weak-coupling methods and phenomenological models: $T_c \simeq (10 - 50) \,\mathrm{MeV}$

- CFL flux tubes with 2SC core (T_{101}) preferred
- critical fields $H \sim 10^{19} \,\mathrm{G} \gg H_{\mathrm{NS}}$, however: creation of flux tubes through cooling into superconducting phase?
- 2SC domain walls (D) preferred over ordinary 2SC flux tubes (T₁) for sufficiently large T_c/μ_q

Open questions

- type-I/type-II transition in multi-component superconductors Do flux tube clusters exist in (a layer of) a neutron star?
 Do they affect transport properties/deformability?
- 2. magnetic flux tubes (and superfluid vortices) in quark matter What happens if CFL matter is rotated and placed into a magnetic field? Are there vortices and flux tubes (misaligned), like in neutron/proton matter? Do flux tubes form in the magnetic field evolution of a neutron star? Does the (color-)flux tube lattice ...
 - ... sustain magnetic mountains? $\epsilon_{\rm CFL} \sim 10^{-7}$ vs $\epsilon_{\rm proton} \sim 10^{-9}$ K. Glampedakis, D. I. Jones and L. Samuelsson, PRL 109, 081103 (2012) ... affect the tidal deformability of the star?