Introduction to Dense Matter

C. J. Pethick (U. of Copenhagen and NORDITA)

"Astro-Solids, Dense Matter, and Gravitational Waves" INT, Seattle, April 16, 2018

Bottom lines

- Exciting time for neutron star studies: new data, progress in theory
- Concentrate on physical principles
- Get inspiration from other systems
- Plenty of work to do on solid phases

General messages

- No fundamental problems in finding properties of matter below 1-2 times that of nuclear matter.
 Microscopic interactions are well understood from laboratory data.
- Large uncertainties at higher densities due to lack of understanding of basic constituents and interactions.
- Observations, especially mass measurements of neutron stars, provide constraints.

Electrons

- Weakly interacting except near surface. Kinetic energy ~ (ħ²/r_e²)/2m_e. Potential energy ~ e²/r_e. P.E./K.E ~ e²/ħv_e. Electron velocity v_e ~ ħ/mr_e. Terrestrial matter: r_e ~ a₀ = ħ²/me². Higher densities: Interactions less important.
- Electrons relativistic. $r_e \lesssim \lambda_e, \hbar/m_e c = \alpha a_0$, Compton wavelength. Fine structure constant $\alpha = e^2/\hbar c \approx 1/137$. Screening length $\sim \alpha^{-1/2} r_e \approx 10r_e$.

Nuclei

• Matter is cold in neutron stars.

Nuclear energies \sim MeV or more (10¹⁰K) than temperature (10⁹K) or less after one hour.

• Lowest energy nucleus (no electrons for the moment). Liquid drop model: bulk, surface and Coulomb energies.

$$E = E_{\text{bulk}} + E_{\text{surf}} + E_{\text{Coul}}$$

Nuclei at Higher Densities

4-

Matter becomes more neutron rich.

• Neutron drip. Bulk expres.
$$E = (-b_{bulk} + b_{symm} S^2)A$$
 $S = N-2$ neutron
 -16 Nev -32 NeV
 $N+2 \text{ excess}$
 $\mu n = m_n c^2 \longrightarrow S \approx b_{symm} S^2 (+ m_n c^2)$
 $\mu n = m_n c^2 \longrightarrow S \approx b_{bulk} (2 b_{symm} \approx 1/4. \text{ Ydrip} \approx 3/8 (Lolosed by Sorface + Couched)$
 $\mu p = -b_{bulk} + 2b_{symm} S - b_{symm} S^2 + (up c^2)$
 $\mu n - \mu p \approx 4 b_{symm} S drip$
 $\approx 2 b_{ulk} \approx 30 \text{ MeV}.$

Much below nuclear density!

· Surface tension reduced as nuclear matter becomes neutron rich.

· Solid state effects become significant

Melting

• Classical plasma of point nuclei in a uniform background charge. Dimensionless parameter

$$\Gamma = \frac{Z^2 e^2}{r_{\rm c} k_{\rm B} T}$$

- At melting $\Gamma_{\rm M} \approx 175$.
- Coulomb energy differs little for different crystal structures fcc $U = -0.895929 \dots Z^2 e^2/r_c$ bcc $U = -0.895873 \dots Z^2 e^2/r_c$

$$k_{\rm B}T_{\rm M} = \frac{Z^2 e^2}{\Gamma_{\rm M} r_{\rm c}} \approx 0.013 Z^{5/3} (nx)^{1/3} \text{ MeV}$$

Lattice energy

- Electron-nucleus and electron-electron interactions become important as density increases.
- Wigner–Seitz approximation. Replace unit cell by sphere of same volume.

- Vanishes for $r_{\rm N} = r_{\rm c}$.
- 15% effect at 1/1000 of nuclear density.

Comments on nuclei

- Up to neutron drip density the equilibrium nuclei are known in the lab.
- At higher densities properties must be estimated from theory.
- Shell effects need to be investigated more.
 Spin-orbit interaction becomes weaker.
 Calculations of neutron drops provide information.

Equilibrium nucleus

- Virial relation still holds, but with the total Coulomb energy, including the lattice contribution.
- Coulomb energy reduced, equilibrium A increases.

Fission instability

• Bohr and Wheeler (1938). Nucleus unstable to quadrupolar distortion if $\widehat{}$

$$\longleftrightarrow \longleftrightarrow \longleftrightarrow E_{\text{surface}} < \frac{1}{2} E_{\text{Coulomb}}^0$$

 E_{Coulomb}^{0} is the Coulomb energy of an *isolated* nucleus (Rather insensitive to medium effects.)

• Equilibrium nucleus unstable if

$$E_{\text{surface}} = 2E_{\text{Coulomb}} = 2E_{\text{Coulomb}}^0 \left[1 - \frac{3}{2} \frac{r_{\text{N}}}{r_{\text{c}}} + \frac{1}{2} \left(\frac{r_{\text{N}}}{r_{\text{c}}} \right)^3 \right] = \frac{1}{2} E_{\text{Coulomb}}^0$$

or

$$\frac{r_{\rm N}}{r_{\rm c}} \gtrsim \frac{1}{2}$$

(Image from Okamoto, Minoru et al., Phys.Rev. C 88, 025801 (2013))

Where does the crust end?

- Start with uniform phase of neutrons, protons and electrons at nuclear density.
- Proton fraction is $\sim 5\%$.
- Reduce density until matter is unstable to creation of density wave. $E = E_0 1/2V_q \delta n_q^2$. (Actually there are two densities, neutron and proton.)
- Coulomb interaction (and low compressibility of electrons) favors small wavelengths.
- Terms in energy $\propto (\nabla n)^2$ favor large wavelengths.
- Instability density gives upper bound on density at which structure appears. Transition has to be 2nd order on general grounds. $((\delta n)^3$ term in energy!)
- Include 3rd and 4th order terms. As density is reduced, the most stable state goes through the sequence of pasta phases found from liquid drop ideas.
- Rather general for a number of systems (block copolymers)

Properties of uniform nuclear and neutron matter

- Solve many-body problem for a specific nucleon-nucleon interaction. Great progress over past few decades due to development of a family of Monte-Carlo methods.
- Interaction obtained by direct fit to N-N scattering data, supplemented by phenomenological 3-body interaction or an effective field theory approach in which one expands the effective interaction between nucleons in powers of the momentum (Weinberg).
- Compare with other models.

Equations of state

Light blue area: constraint provided by existence of a $1.65M_{\odot}$ neutron star. (Hebeler, Lattimer, CJP, Schwenk, Phys. Rev. Lett. **105**, 161102 (2010).)

Hebeler, Lattimer, CJP, Scwenk, Ap. J 773:11 (2013).

TABLE 1

EQUATIONS OF STATE

Symbol	Reference	Approach	Composition
FP	Friedman & Pandharipande (1981)	Variational	нр
PS	Pandharipande & Smith (1975)	Potential	n ^o
WFF(1-3)	Wiringa, Fiks & Fabrocine (1988)	Variational	пр
AP(1-4)	Akmal & Pandharipande (1997)	Variational	пр
MS(1-3)	Müller & Serot (1996)	Field theoretical	пр
MPA(1-2)	Müther, Prakash, & Ainsworth (1987)	Dirac-Brueckner HF	пр
ENG	Engvik et al. (1996)	Dirac-Brueckner HF	пр
PAL(1-6)	Prakash et al. (1988)	Schematic potential	нр
GM(1-3)	Glendenning & Moszkowski (1991)	Field theoretical	npH
GS(1-2)	Glendenning & Schaffner-Bielich (1999)	Field theoretical	npK
PCL(1-2)	Prakash, Cooke, & Lattimer (1995)	Field theoretical	npHQ
SQM(1-3)	Prakash et al. (1995)	Quark matter	Q(u, d, s)

Note.—"Approach" refers to the underlying theoretical technique. "Composition" refers to strongly interacting components (n = neutron, p = proton, H = hyperon, K = kaon, Q = quark); all models include leptonic contributions.

Neutron superfluidity

- Phase shifts suggest ${}^{1}S_{0}$ superfluidity (low density) and ${}^{3}P_{2}$ - ${}^{3}F_{2}$ (higher density).
- Simplest approach: BCS approximation (mean field).
- Induced interactions (exchange of spin fluctuations) suppress ${}^{1}S_{0}$ gap.
- Inspiration from ultracold atomic gases.
- Reasonable agreement at low densities ($\leq n_s/10$). (Gor'kov and Melik-Barkhudarov (1961))
- Considerable uncertainties at higher densities.
- Calculations of proton superconductivity more uncertain because of the dense neutron medium.

Nucleon-nucleon phase shifts (in degrees) Positive phase shifts correspond to attraction. (from nn-online.org, Nijmegen)

Figure 9: The ${}^{1}S_{0}$ pairing gap Δ at higher densities as a function of Fermi wave number k_{F} . Results are shown for the BCS approximation (see Fig. 7), for the method of Correlated Basis Functions (CBF) [12], for the polarization potential method, in which induced interactions are calculated in terms of pseudopotentials (Polarization Pot.) [13], for a calculation in which induced interactions in the particle-hole channels are calculated from a renormalization group (RG) approach [42], and for calculations based on Brueckner theory [46].

Nuclear matter density corresponds to $k_{Fn} = 1.68 \text{ fm}^{-1}$ Gezerlis, CJP, and Schwenk, arXiv 1406.6109

${}^{3}\mathbf{P}_{2}$ - ${}^{3}\mathbf{F}_{2}$ superfluidity

Inclusion of higher-order processes suppresses gaps. (A. Schwenk and B. L. Friman, Phys. Rev. Lett. **92**, 082501 (2004).)

Neutron superfluid density

Neutron current density for stationary lattice

$$\mathbf{j}_n = n_n^s \frac{\hbar \nabla \phi_n}{m}$$

 $2\phi_n$ – phase of the neutron pair condensate

- Important for glitch models, collective modes, two-fluid hydrodynamics
- Simple estimate: density of neutrons between nuclei
- Band structure calculations suggest strong reduction (Chamel)
- Gives difficulties for glitch models.
 Moment of inertia of superfluid too small (Andersson et al. PRL (2012) Chamel PRL (2013)).

Neutron superfluid density

Simple considerations

Scattering of BCS quasiparticles by a spin-independent potential, V.

- Quasiparticles at Fermi momentum are half particles and half holes. Interaction of particle component exactly cancels that of hole component.
- NO SCATTERING OF EXCITATION AT THE FERMI MOMENTUM TO ANOTHER STATE WITH THE SAME ENERGY!
- Quasiparticle energy $E_k = \pm \sqrt{\xi_k^2 + \Delta^2}$ where $\xi_k = k^2/2m - \mu$
- Matrix element for scattering of quasiparticle from state $|{\bf k}+\rangle$ to state $|{\bf k}'+\rangle$

$$(u_{\mathbf{k}}u_{\mathbf{k}'} - v_{\mathbf{k}}v_{\mathbf{k}'})V(\mathbf{k} - \mathbf{k}')$$

where $u_{\mathbf{k}}^2 = (1 + \xi_k/E_k)/2$ and $v_{\mathbf{k}}^2 = (1 - \xi_k/E_k)/2$.

Pairing and band structure

- Watanabe. Fermionic atoms in a periodic potential, with pairing
- One-dimensional and a single Fourier component of the periodic potential
- Band structure effects reduced by pairing. Small if pairing gap is large compared with the periodic potential
- In neutron star inner crust, band gaps are generally larger than the strength of the potential for most Fourier components
- Approximate way of dealing with many Fourier components.
- Conclusion. Band structure can reduce the neutron superfluid density by perhaps 10s of percent but not a factor of 10.
- Glitch models invoking the neutron superfluid in the crust are still viable!

Suppression of band structure effects by pairing

G. Watanabe and CJP, Phys. Rev. Lett. 119, 062701 (2017).

Fourier transform of potential of nucleus (Chamel)

Pasta phases as liquid crystals

- Structures resemble those of some liquid crystals.
 - Lasagna \sim smectic A.
 - Spaghetti \sim columnar phase.
- Differences
 - Neutrons and protons are superfluid.
 - Two components.
- Structure is very flexible (surface and Coulomb energies compared with bulk energies).

Two preprints on dynamics. Kobyakov and CJP, arXiv 1803.06254, and Durel and Urban, arXiv 1803.07967.

Three-fluid model. Two superfluids plus a "normal" component associated with motion of the structure.

- Is there phase coherence between layers in lasagna?
 If not, there can be extra modes since proton motion need not be potential. (There could be shear.)
- Clarification needed.

Spaghetti and lasagna are not uniform

- Shown by numerical microscopic calculations. (Williams, Koonin, Watanabe, Newton, Stone, Horowitz, Caplan,...)
- $\omega^2 \propto Ak_z^2 + Bq_{\perp}^4$ for uniform lasagna becomes a linear spectrum in all directions when lasagna is modulated.

Temperature does not destroy long-range order of lasagna.(cf.Landau–Peierls) See also Baym, Friman, Grinstein (Nucl. Phys. B **210**, 193 (1982)) for pion condensates, where similar conclusions apply.

• More general hydrodynamic model needed.

Nuclear Waffles (Berry, C. Horowitz, ...)

Imperfect lasagna

- Cross links, and disorder e.g., "parking garage" structure (Berry, Caplan, Horowitz, Huber, and Schneider, Phys. Rev. C 94, 055801 (2016).
- Electrical conductivity of electrons reduced. Helps to explain evolution of NS. (Rea, Viganò, and Pons, Nature Physics 9, 431 (2013))
- But protons are superconducting. If pasta is disordered, the protons could be a GOOD electrical conductor.

Concluding remarks

- Below nuclear density physical problems are well posed. Theorists have no excuses!
- Many other topics
 - Microscopic models of matter at supernuclear densities.
 - Neutrino emission in general, and from pasta phases in particular.
 - Elastic properties of polycrystals. Can be extended to pasta phases.
 - Magnetic fields.
 - Flux lines and vortices in pasta.
- Need help from "practical" people, such as metallurgists, polymer scientists, Some problems that physicists have avoided have been studied in depth because of their importance in the real world.
- Outer part of neutron star is important because many observable phenomena are affected by it.