Equation of State Constraints from GW170817

J. M. Lattimer

Department of Physics & Astronomy

STONY BROOK UNIVERSITY

Collaborators: Soumi De, Daniel Finstad, Christopher Biwer, Duncan Brown (Syracuse) & Edo Berger (Harvard) INT-18-71W Astro-Solids, Dense Matter and Gravitational Waves 16-20 April, 2018

GW170817 Source Properties

90% confidence intervals from LVC

 $D = 40^{+8}_{-14} \text{ Mpc}$

Chirp mass

- $\mathcal{M} = 1.188^{+0.004}_{-0.002} M_{\odot}$
 - $m_1 = 1.42^{+0.18}_{-0.06} M_{\odot}$ $m_2 = 1.29^{+0.07}_{-0.13} M_{\odot}$
 - $q = \frac{m_2}{m_1} = 0.90^{+0.10}_{-0.17}$

The binary tidal deformability $\bar{\Lambda} < 800$

J. M. Lattimer

Equation of State Constraints from GW170817

t(s)

Tidal Deformability

Tidal deformability λ is the ratio between the induced dipole moment Q_{ii} and the external tidal field E_{ii} , $Q_{ii} \equiv -\lambda E_{ii}$.

 k_2 is the dimensionless Love number. It is convenient to work with the dimensionless

$$\Lambda = \frac{\lambda c^{10}}{G^4 m^5} \equiv \frac{2}{3} k_2 \left(\frac{Rc^2}{Gm}\right)^5$$

For a binary neutron star, the relevant quantity is $(q = m_2/m_1 \le 1)$

When We Know What

LIGO/VIRGO Parameter Determination

Although there are 11 free wave-form parameters to the lowest post- Newtonian order that includes finite-size effects, LVC used a model with 13 parameters to fit the waveform:

- Sky location (2)
- Distance (1)
- Inclination (1)
- Coalescence time (1)
- Coalescence phase (1)
- Polarization (1)
- Component masses (2)
- Spin parameters (2)
- Tidal parameters (2)

• Extrinsic

Intrinsic

GW170817 Tidal Deformability Constraints

A Re-Analysis of GW170817

- Take advantage of the precisely-known electromagnetic source position (Soares-Santos et al., 2017).
- ► Use existing knowledge of the H₀ and the redshift of NGC 4993 to fix the distance (Cantiello et al., 2017).
- Utilize the assumption that both neutron stars have the same equation of state by determining and using a correlation among m₁, m₂, Λ₁ and Λ₂.
- ► The baseline model thus has 9 instead of 13 parameters.
- Explore the effects of varying the mass and deformability parameter priors.
- Explore the effects of neglecting component spins.

Properties of Observed DNS

DNS with only an upper limit to m_p DNS with $\tau_{GW} = \infty$

Piecewise Polytropic Equations of State

- ▶ For many reasons, it's believed neutron stars have hadronic crusts; the EOS is well-determined below n₀ ~ 0.5n_s.
- ▶ $n_0 = n_s/2.7$, $p_0 = 0.2177$ MeV fm⁻³, $\varepsilon_0 = 56.24$ MeV fm⁻³.
- ▶ Read et al. found that M R is well-approximated with an EOS above n_0 containing as few as 3 polytropic segments.
- Read et al. found optimal upper boundaries (n₁, n₂, and n₃ = 1.85n_s, 3.7n_s, and 7.4n_s) globally fit wide varieties of hadronic EOSs, leaving just 3 EOS parameters: p₁, p₂, and p₃.
- ▶ Neutron matter theory, nuclear experiment, and the unitary gas suggest that 8.4 MeV fm⁻³ < p_1 < 20 MeV fm⁻³, but we extend the upper limit to 30 MeV fm⁻³. These limits imply $32 < S_v/MeV < 38$ and 39 < L/MeV < 85.
- The parameters p_2 and p_3 are limited from above by causality and below by a maximum mass $1.9M_{\odot} < M_{max} < 2.4M_{\odot}$.
- The parameters p_1, p_2 and p_3 are uniformly sampled.

J. M. Lattimer

Equation of State Constraints from GW170817

The Radius-Pressure- M_{max} Correlations

M - R and EOS Constraints

イロト イヨト イヨト イヨト

æ

Dimensionless Tidal Deformability

Dimensionless Tidal Deformability

$\Lambda \propto eta^{-6}$ and $R_1 = R_2$ Correlations

In the GW170817 mass range, $1.1 < m/M_{\odot} < 1.6$, $k_2 \propto \beta^{-1}$, and $\Lambda \simeq a\beta^{-6}$. Piecewise polytropes give $a = 0.0093 \pm 0.0007$.

Furthermore, in this mass range, R is insensitive to m. For $M_{max} \gtrsim 2M_{\odot}$, $<\Delta R> = -0.07$ km and $\sqrt{<(\Delta R)^2>} = 0.11$ km, where $\Delta R = R_{1.6} - R_{1.1}$.

With the assumptions $\Lambda = a \beta^{-6}$ and $R(m) = R_{1.4}$, one finds

$$\Lambda_2 = q^{-6} \Lambda_1,$$

$$ar{\Lambda} = rac{16a}{13} \left(rac{R_{1.4}c^2}{G\mathcal{M}}
ight)^6 rac{q^{8/5}}{(1+q)^{26/5}} (12 - 11q + 12q^2),$$

which is remarkably insensitive to q:

$$\frac{\partial \bar{\Lambda}}{\partial q} = \frac{16a}{65} \left(\frac{R_{1.4}c^2}{G\mathcal{M}}\right)^6 \frac{(1-q)q^{3/5}}{(1+q)^{31/5}} (96 - 263q + 96q^2)$$

vanishes when q = 1. $\overline{\Lambda}(q = 0.75)/\overline{\Lambda}(q = 1) = 1.02$.

Dimensionless Binary Tidal Deformability

Dimensionless Binary Tidal Deformability

Tidal Deformabilities with Correlations

<u>GW17081</u>7 Baseline Results for $\Lambda_1 - \Lambda_2$ Uncertainties reflect 90% credible intervals 2000 1500 < 1000 500 Uniform Double Galactic Neutron Stars distribution Neutron Stars 500 1500 2000 500 1000 1500 2000 0 2000 1000 500 1000 1500 Λ_1 Λ_1 Λ_1

 $\begin{array}{ll} \bar{\Lambda} = 310^{+679}_{-234} & \bar{\Lambda} = 354^{+691}_{-245} & \bar{\Lambda} = 334^{+670}_{-241} \\ \bar{\Lambda} < 825 \; (90\%) & \bar{\Lambda} < 852 \; (90\%) & \bar{\Lambda} < 888 \; (90\%) \\ \bar{\Lambda} > 125 \; (90\%) & \bar{\Lambda} > 170 \; (90\%) & \bar{\Lambda} > 140 \; (90\%) \\ \mathcal{B} = 250 & \mathcal{B} = 110 & \mathcal{B} = 97 \\ \mathcal{B} \text{ is Bayes Factor relative to runs with uncorrelated } \Lambda's_{acc} \end{array}$

J. M. Lattimer

Equation of State Constraints from GW170817

Comparison with LVC Assuming Uncorrelated Λ 's

Conclusions from GW170817

 A constraint on Λ
 corresponds to a constraint on the neutron star radius in the GW170817 mass range:

 $\hat{R} \simeq (3.69 \pm 0.04) \bar{\Lambda}^{1/6} (\mathcal{M}/M_{\odot}) \text{ km}, \quad \frac{d\hat{R}}{d\bar{\Lambda}} \simeq 0.0022 \text{ km}.$

- This correlation is insensitive to q which is poorly-determined. It's also reasonably valid if one star is a hybrid star.
- The LVC quoted constraint Λ̄ < 700 − 800 is not justified by their uncorrelated Λ₁ − Λ₂ results, which instead imply Λ̄ < 1100. The bias introduced by not correlating Λ₁ and Λ₂ is about +250, even when considering hybrid (twin) stars.
- A non-zero Λ
 is favored relative to its neglect; correlated Λ₁ − Λ₂ is favored relative to uncorrelated Λ₁ − Λ₂.
- Zero spin priors are favored relative to their inclusion. Spins increase the mean value of Λ and increase its uncertainty.
- ▶ The lower limit to $\bar{\Lambda}$ we obtain is above the causally-mandated minimum of about 65 for $\mathcal{M} = 1.19 M_{\odot}$ and $M_{max} > 2 M_{\odot}$.