

ARC Centre of Excellence for Gravitational Wave Discovery

PAUL LASKY

THE REMNANTS OF NEUTRON Star Mergers

credit: Kastaun, Giacomazzo & Ciolfi

CONTENTS

- theoretical outcomes of mergers
- GW170817 post-merger outcome
- gravitational-waves:
 - < 1 s post merger</p>
 - >> 10 s post-merger

hypermassive neutron stars

supramassive neutron stars

- support: differential rotation support: solid-body rotation
- $1.2 \leq M/M_{\rm TOV} \leq 1.5$
- collapse: Alfvén timescale • ~ 1 - 100 ms (??)

margarowan

- •1.0 $\leq M/M_{\rm TOV} \leq 1.2$
- collapse: spindown timescale • ~ 10 - 10,000 S (Ravi & PL 2014)

SUPRA- OR HYPERMASSIVE?

www.www.www.www.www.www.

SUPRA- OR HYPERMASSIVE?

WHAT ABOUT

GW170817?

searching for a GW170817 post-merger remnant

Abbott+ (2017; GW170817 "post-merger paper")

WHAT DOES THE KILONOVAE TELL US?

- "blue bump"
 - neutrinos from remnant raises electron fraction in disk wind
 - Lanthanide-free outflow –> bright blue bump
 - indicative of hypermassive neutron star lasting ~100s of ms

Days since merger

WHAT DOES THE LONG TERM Emission tell us?

- > ??????
 - Personal opinion: not likely a long-lived neutron star
 - many people have fit models;
 - requires B~10¹² G, ε ~ 0.003
 - magnetic burial, ...
- If no collapse, can learn about EOS (maximum mass, ...)
 - but need to know inspiral masses better.

Yu & Dai (2018)

Li et al. (yesterday)

GRAVITATIONAL WAVES FROM...

HYPERMASSIVE NEUTRON STARS

GRAVITATIONAL WAVES FROM HYPERMASSIVE NEUTRON STARS

Clark et al. (2016)

	SNR (@ 50 Mpc)	horizon distance (Mpc)	detection rate (year ⁻¹)
aLIGO (design sensitivity)	~ 3	~ 30	~ 0.01
Einstein Telescope	~ 27	~ 270	~ 3

marrowshippenson

ENSEMBLE DETECTIONS

- Bayes-factor summing
- coherent mode stacking
 - use information from inspiral

GRAVITATIONAL WAVES FROM...

SUPRAMASSIVE & Long-Lived Neutron stars

LONG-LIVED NEUTRON STARS

GRAVITATIONAL WAVE EMISSION - THEORY

• toroidal magnetic field + spin flip

e.g., Cutler 2002, Dall'Osso et al. (2015), PL & Glampedakis (2016)


```
PL & Melatos (2013)
```


- toroidal magnetic field + spin flip
- secular bar-mode instability

e.g., Corsi & Meszaros (2009) Doneva et al. (2015)

$$\epsilon_f \approx 10^{-3}$$

margan

- toroidal magnetic field + spin flip
- secular bar-mode instability
- unstable inertial modes

spin down timescale: $\tau_{\rm GW} \sim 5 \times 10^9 \left(\frac{P}{1 \,{\rm ms}}\right)^6 \left(\frac{10^{-4}}{\alpha_{\rm max}}\right)^2 \,{\rm s}$

(Owen et al. 1998) PL & Glampedakis (2016)

marinally and the second second and the

Can constrain GW emission from X-ray observations

PL+2017

 $\dot{\Omega} \propto \Omega^{lpha}$

margan

Can constrain GW emission from X-ray observations

 $\dot{\Omega} \propto \Omega^n$

BRAKING INDEX

Can constrain GW emission from X-ray observations

 $\dot{\Omega} \propto \Omega^n$

PL+2017

• Can constrain GW emission from X-ray observations

mar allow and have a second a second a second

GRAVITATIONAL WAVE EMISSION - OBSERVATIONS

M_G-QS-X=3.5

_ M_G-SFHα-HΔ

M_G-SFHο -Δ

- - M₁

- M.,

___ M_

3.5

3

2.5

2

1.5

0.5

9

10

11

12

M/M ssun Guillot et al. 2014

90% conf. level

Lu et al. 2015

GRAVITATIONAL COLLAPSE AND ...

THE EQUATION OF STATE

Drago et al. (2016)

quark stars?

ano M

mangrowad

CONCLUSIONS

- rich physics of post-merger remnants not well understood
- potential for multi-messenger analysis:
 - radio, optical, x ray, gamma ray
 - gravitational wave

OPEN CHALLENGES FOR DETECTION

- data-analysis algorithms
 - many developed, and looking.
 - can get better sensitivity if we have better models!
- Binary neutron star simulations:
 - numerical convergence?
 - dissipative effects?
 - magnetic fields under-resolved/not understood,

OPEN CHALLENGES FOR DETECTION

- data-analysis algorithms
 - many developed, and looking.
 - can get better sensitivity if we have better models!
- Understanding the physics
 - What B-field do we get?
 - Does the spin flip happen, lan? Timescale?
 - Are bar modes, r-modes relevant?
- We need better detectors....

EXTRA SLIDES

PL et al (2014)

wwwwww

Can constrain GW emission from X-ray observations

