Modelling crustal mountains in accreting systems

LIGO-G1800794-v2

Low Mass X-ray Binaries

Mass is stripped from the donor

Forms a disc and spirals in

Interacts with the magnetic field

Transfers angular momentum to the central NS, spinning it up

Weak B fields $B \approx 10^8 \text{G}$

<u>GWs from Low Mass X-ray Binaries</u>

<u>Cutoff of distribution at ~ 730 Hz</u>

Fastest Neutron Star: 719 Hz

(Chakrabarty et al 2003, Patruno 2010, Papitto et al. 2014, Patruno, BH and Andersson. 2017)

Spin up halted well before breakup frequency

(Theoretical lower limit on max breakup f ~1200 Hz - BH et al. in preparation)

Disk/magnetosphere interaction?

(White & Zhang 1997, Andersson, Glampedakis, BH & Watts 2006, BH & Patruno 2011, Patruno, D'Angelo & BH 2012, D'Angelo 2016, Bhattacharya & Chakrabarty 2017)

GWs!: "mountains", unstable modes, magnetic

<u>deformations</u>

(Bildsten 1998, Andersson 1998, Cutler 2002, BH et al. 06, BH et al. 08, Payne & Melatos 05)

<u>Thermal mountains</u>

Mountains from 'wavy' capture layers in crust

Deep crustal heating 'consistent' with cooling observations from X-ray transients.

(Haensel & Zdunik 1998, 2008) (Degenaar et al 2015)

Magnetic mountains

In accreting systems
Magnetic field distorted by
the accretion flow

Possibility of confining a 'mountain'

(Payne & Melatos 2005, Priymak et al. 2011, Mukherjee et al. 2012)

Chuck's talk! (Fattoyev et al. 2018)

r-modes: Ben's talk, Kai's talk

The spin of Low Mass X-ray Binaries

Spin distribution is bimodal, with a cutoff around 540 Hz

Slow population widely distributed around 300 Hz

Ms Radio Pulsar distribution is NOT bimodal, but consistent with the slow population

(Patruno, BH & Andersson 2017)

The spin of Low Mass X-ray Binaries

Histogram and theoretical densities

(Patruno, BH & Andersson 2017)

Which are the fast pulsars?

- 6 NXPs, 4 AMXPs (30 in the full sample)
- Two 'transitional' pulsars
- one is J1023+0038: well monitored in radio and X-ray

$$\dot{\nu}_{\rm radio} = -2.3985 \times 10^{-15} \ {\rm Hz/s}$$

$$\dot{\nu}_{\rm xray} = -3.0413 \times 10^{-15} \text{ Hz/s}$$
 27% faster!

Problem for accretion torque models....

So what about GWs?

Can GWs explain the additional spin-down? $\dot{\nu}_{\rm diff} = -6.428 \times 10^{-16} ~{\rm Hz/s} \qquad \text{(BH \& Patruno 2017)}$

Mountain:

$$Q_{22} \approx 4.4 \times 10^{35} \text{ g cm}^2$$

 $\varepsilon \approx 5 \times 10^{-10} \quad h \approx 6 \times 10^{-28}$

r-mode

 $\alpha \approx 5 \times 10^{-8}$

So what about GWs?

Thermal Mountain:

$$Q_{22} \approx 3 \times 10^{35} \left(\frac{\delta T_q}{10^5 \text{ K}}\right) \left(\frac{E_{th}}{30 \text{ MeV}}\right)^3 \text{ g cm}^2$$

(Ushomirsky, Cutler & Bildsten 2000)

 $\delta T \approx 5 \times 10^6 \text{K}$ after 1 month of accretion

(BH & Patruno 2017)

Crustal (thermal and magnetic) mountains Mountain accumulates during outbursts Does it dissipate between outbursts?

Source	$ \frac{\nu}{(Hz)} $	d (kpc)	$\langle \dot{M} \rangle$ (10 ⁻¹⁰ M _{\odot} yr ⁻¹)	Δt (d)	Ref.
SAX J1808.4–3658	401	3.5	4	30	Patruno et al. (2009)
XTE J1751–305	435	7.5	10	10	Miller et al. (2003)
XTE J1814–338	314	8	2	60	this work
IGR J00291+5934	599	5	6	14	Falanga et al. (2005)
HETE J1900.1-2455	377	5	8	3000	Papitto et al. (2013b)
Aql X-1	550	5	10	30	Güngör, Güver & Eksi (2011)
Swift J1756.9–2508	182.1	8	5	10	Krimm et al. (2007)
NGC 6440 X-2	204.8	8.5	1	4	this work
IGR J17511–3057	244.9	6.9	6	24	Falanga et al. (2011)
IGR J17498–2921	400.9	7.6	6	40	Falanga et al. (2012)
Swift J1749.4-2807	518	6.7	2	20	Ferrigno et al. (2011)
EXO 0748-676	552	5.9	3	8760	Degenaar et al. (2011)
4U 1608–52	620	3.6	20	700	Gierlinski & Done (2002)
KS 1731–260	526	7	11	4563	Narita, Grindlay & Barret (2001)
SAX J1750.8–2900	601	6.8	4	100	this work
4U 1636–536	581	5	30	pers.	this work
4U 1728-34	363	5	5	pers.	Egron et al. (2011)
4U 1702–429	329	5.5	23	pers.	this work
4U 0614+091	415	3.2	6	pers.	Piraino et al. (1999)

(BH, Priymak, Patruno, Oppenoorth, Melatos & Lasky 2015)

<u>Thermal mountains</u>

If deformations of J1023+0038 are typical, persistent sources promising

(BH, Priymak, Melatos, Lasky, Patruno & Oppenoorth, 2015)

Magnetic mountains

Only systems with strong buried fields detectable

Possible cyclotron features

(BH, Priymak, Patruno, Oppenoorth, Melatos & Lasky 2015)

Magnetic mountains

Only systems with strong fields detectable Possible cyclotron features

(BH, Priymak, Patruno, Oppenoorth, Melatos & Lasky 2015, Mukherjee et al. 2012)

what is
$$\frac{\delta T_q}{\delta T}$$
 ?

Solve for equilibria of accreted matter on a magnetised star (work by Neha Singh, Grad Shafranov code by Dipanjan Mukherjee)
 Assume capture layers are perturbed

$$\delta T_q = -10^2 C_k^{-1} p_{30}^{-1} \Gamma\left(\frac{\delta \rho_2}{\rho_0}\right) Q_M \Delta M_{21}$$

 $\frac{\delta T_q}{\delta T} = -\Gamma \frac{\delta \rho_2}{\rho_0}$

Extrapolate linearly to neutron drip

<u>Conclusions</u>

- There is a 'fast' and a 'slow' population of LMXBs
- In the 'fast' population GW emission may be efficient
- PSR J1023 may be building a mountain and emitting GWs during accretion..the next transition to radio will help constrain the model
- If deformations persist at this level some of these systems may be interesting sources of GWs..especially those with long outbursts.
- Accretion geometry fundamental to determine quadrupolar deformations