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Thermal evolution of isolated and accreting neutron stars
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Cooling of isolated NSs

t = 0: T ∼ 109 − 1010 K.

t . 102 years

◮ the core cools by ν-emission,

◮ the crust by heat diffusion.

→ crust properties.

t . 105 years

◮ thermal balance between the
core and the crust,

◮ cooling by ν-emission;

→ core properties.

t & 105 years

◮ cooling via emission of
photons from the surface.

Evolution of the temperature profile
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M=1.4M ⊙ , Bednarek+ EOS, no SPF
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Cooling of isolated NSs

t = 0: T ∼ 109 − 1010 K.

t . 102 years

◮ the core cools by ν-emission,

◮ the crust by heat diffusion.

→ crust properties.

t . 105 years

◮ thermal balance between the
core and the crust,

◮ cooling by ν-emission;

→ core properties.

t & 105 years

◮ cooling via emission of
photons from the surface.

Evolution of the surface temperature
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M=1.4M ⊙ , Bednarek+ EOS, no SPF

Heat equation

integrated over the whole star

C(T
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i

)− L∞
γ (T

s
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.

with T
i

= Teφ and T
s

(T
i

) is given by a model for the
heat blanketing envelope.
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Observations of isolated NSs

Biases

◮ small objects: detection of
NSs with T ∼ 105 − 107 K
within few kpc

◮ middle-aged NSs with
extended supernova
remnant.

Age and temperature determina-
tion

◮ age: uncertain unless the
supernova as been observed
in the past (cf. Crab pulsar):
estimation from spin-down or
modelling the expansion of
the supernova.

◮ temperature: composition of
the envelope unknown: H,
He, . . . Fe?

Observational data

X-ray telescopes eg. XMM-Newton, Chandra,
Athena, . . .
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Heat equation

All observed NSs are in the core and photon domi-
nated stages → dependence on core and envelope
properties.

C(T
i

)
dT

i

dt
= −L∞

ν (T
i

)− L∞
γ (T

s

).
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Neutrino emission

See eg. Table 1 of Potekhin et al. SSR
(2015) - arXiv:1507.06186

Slow processes with Qν ∝ T 8

◮ modified Urca

n + N → p + N + l + νl

with N a spectator nucleon to ensure
momentum conservation.

◮ NN-bremsstrahlung

N + N → N + N + νl + ν̄l

Fast process: direct Urca with Qν ∝ T 6

n → p + l + ν̄l

with l = e−, µ−.
Momentum conservation imposes EOS-
dependent density/mass threshold above
which it operates.

Non-superfluid NSs
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Two EOS, one allowing for DURCA.

◮ Hot (luminous) objects: low-mass
NSs;

◮ Cold objects: high-mass NSs.

DR. MORGANE FORTIN (CAMK) THERMAL EVOLUTION OF ISOLATED AND ACCRETING NEUTRON STARS



Thermal evolution of accreting NSs

Soft X-ray Transients

NSs in close binaries with a low-mass com-
panion undergoing:

◮ repeated short periods of accretion;

◮ long quiescent phases.

Observations
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Thermal equilibrium

Quasi-stationary state:
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Heating

During the accretion phases, deep crustal
heating.

⇒ L∞
h

= L∞
DCH

(〈Ṁ〉)

with 〈Ṁ〉 estimated, averaged over periods
of accretion and quiescence.

Ingredients

◮ Properties of the core: EOS and
baryon superfluidity

◮ envelope models.
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Thermal evolution of accreting NSs

Soft X-ray Transients

NSs in close binaries with a low-mass com-
panion undergoing:

◮ repeated short periods of accretion;

◮ long quiescent phases.

Modelling
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Constraints

Low photon luminosity:

◮ very high ν losses ie. large Lν ;

◮ the most efficient ν-process DUrca is
necessary: not all EoS allow for it.

◮ necessary to go beyond the minimal
cooling model
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Thermal evolution of isolated and accreting NSs
eg. Levenfish & Haensel (2007), Beznogov & Yakovlev (2015a,b)

Fortin, Taranto, Burgio, Haensel, Schulze and Zdunik, MNRAS 475 (2018)

◮ BHF EOS of Taranto et al. 2016 (AV18+Urbana) with a DURCA onset at 1.1M⊙

◮ two limiting models of envelope (non-accreted - blue and fully-accreted - red) from
Potekhin et al. (2003)

Non superfluid matter

Consistent with the coolest SXT but not the middle-aged hot INS
+ problematic mass distribution (see also Beznogov & Yakovlev (2015a,b))
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Thermal evolution of isolated and accreting NSs
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Superfluidity (SPF)
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◮ Zhou et al. (2004): calculated with
the same nucleon interaction as the
EOS.

◮ SPF ∗: BHF approximation for the
SP potential.

When T ≤ Tc , formation of Cooper pairs
→ superfluidity.

DURCA threshold
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Superfluidity (SPF)
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◮ Zhou et al. (2004): calculated with
the same nucleon interaction as the
EOS.

◮ SPF ∗: BHF approximation for the
SP potential.

When T ≤ Tc , formation of Cooper pairs
→ superfluidity.

◮ exponentially suppresses of all
reactions involving the SPF baryons;

◮ broadens the onset of the DURCA
threshold.
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Superfluidity (SPF)
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◮ Zhou et al. (2004): calculated with
the same nucleon interaction as the
EOS.

◮ SPF ∗: BHF approximation for the
SP potential.

When T ≤ Tc , formation of Cooper pairs
→ superfluidity.

◮ exponentially suppresses of all
reactions involving the SPF baryons;

◮ broadens the onset of the DURCA
threshold.
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Superfluidity (SPF)
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◮ Zhou et al. (2004): calculated with
the same nucleon interaction as the
EOS.

◮ SPF ∗: BHF approximation for the
SP potential.

When T ≤ Tc , formation of Cooper pairs
→ superfluidity.

◮ exponentially suppresses of all
reactions involving the SPF baryons;

◮ broadens the onset of the DURCA
threshold.

DURCA threshold

0.2 0.4 0.6 0.8 1.0 1.2
nB (fm−3)

0.0

0.2

0.4

0.6

0.8

1.0

Q
D
U
/Q

0 D
U T=108 K

M
m
ax

2
.0

1
.5

1
.0

0, 0

p1S0,0

p1S0,n3P2

p1S0,n3P2*

DR. MORGANE FORTIN (CAMK) THERMAL EVOLUTION OF ISOLATED AND ACCRETING NEUTRON STARS



Superfluidity (SPF)
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◮ Zhou et al. (2004): calculated with
the same nucleon interaction as the
EOS.

◮ SPF ∗: BHF approximation for the
SP potential.

When T ≤ Tc , formation of Cooper pairs
→ superfluidity.

◮ exponentially suppresses of all
reactions involving the SPF baryons;

◮ broadens the onset of the DURCA
threshold.

◮ initiates a new neutrino processes:
"PBF" (pair breaking and formation
processes): B → B + ν + ν̄; Qν ∝ T 7

very strongly reduced for 1S0 pairing by
in-medium effects,
⇒ only operating for 3P2 neutron
pairing.

Cooling curves (similar trends for SXTs)
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Thermal evolution of isolated and accreting NSs

Fortin, Taranto, Burgio, Haensel, Schulze and Zdunik, MNRAS 475 (2018)

◮ BHF EOS of Taranto et al. 2016 (AV18+Urbana) with a DURCA onset at 1.1M⊙

◮ two limiting models of envelope (non-accreted - blue and fully-accreted - red) from
Potekhin et al. (2003)

SPF gaps consistent with the EOS

◮ smooth mass distribution

◮ but too strong SPF reduction of the DURCA process and PBF processes.
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Thermal evolution of isolated and accreting NSs
Fortin, Taranto, Burgio, Haensel, Schulze and Zdunik, MNRAS 475 (2018)

◮ BHF EOS of Taranto et al. 2016 with a DURCA onset at 1.1M⊙

◮ SPF gaps calculated with the same nucleon interaction

◮ two limiting models of envelope (non-accreted - blue and fully-accreted - red)

Consistency with the data

◮ middle aged INSs and hot SXTs = low-mass NSs where proton SPF suppresses
slow ν-processes and no neutron SPF hence no PBF process.

◮ cold SXTs = massive NSs with fully operating DURCA process: protons and
neutrons not superfluid at the center of massive stars

◮ smooth mass distribution: protons and neutrons SPF at the center of
medium-mass NSs.

see also Beznogov & Yakovlev (2015a,b), Han & Steiner PRC (2017)
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Conclusions

◮ joint modeling of INSs and SXTs required;

◮ modeling of SXTs indicates that the DURCA is required: go beyond the minimal
cooling model + constrain on the EOS;

◮ some general trends on baryon SPF can be derived;

◮ more observations of INSs and SXTs;

◮ determination of the mass of some of these NSs.

◮ consistent calculations of the EOS and the SPF gaps.
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. . . and more: (hyper)nuclei and neutron stars
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Hyperonic equations of state

Hyperons (Y)
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Hyperonic equations of state
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Observational constraint:

• each EoS has a maximum mass M
max

;

• M
max

reduced when Y are included;

• consistency with the observations:
M
max

≥ Mobs

max

.

• Largest masses observed:
PSR J1614-2230 & PSR J0348+0432

Mobs

max

≃ 2 M⊙.

• Hyperon puzzle: Can hyperons be present in
NSs and yet M

max

≥ 2 M⊙?
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Experimentally calibrated hyperonic EoS

Experimental properties of hypernuclei

Gal et al., RMP (2016)

◮ ∼ 40 Λ-hypernuclei
+ measurement of binding energy

◮ only one unambiguous
ΛΛ-hypernuclei:
measurement of the bond energy:

∆BΛΛ(
6
ΛΛHe) = 0.67 ± 0.17 MeV.

◮ few Ξ-hypernuclei
but no measurement of binding
energy

◮ no Σ-hypernuclei
repulsive Σ-nucleon interaction?

Fortin, Avancini, Providência, Vidaña, PRC
95 (2017)

RMF models (TM1, TM2ωρ, NL3, NL3ωρ,
DDME2) + modeling of hypernuclei
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Usual approach to hyperons

Adjust the couplings for the Λ to reproduce:

◮ the Λ-potential in symm. NM UN
Λ (n0)

◮ the Λ-potential in pure Λ matter
UΛ
Λ (n0) or UΛ

Λ (n0/5)

Experimentally calibrated potentials

◮ UN
Λ (n0) ∈ [−36,−30] MeV

usually (-30, -28) MeV

◮ UΛ
Λ (n0) ∈ [−14,−9] MeV

◮ or UΛ
Λ (n0/5) ∈ [−6,−5] MeV

usually (-5, -1) MeV
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Experimentally calibrated hyperonic EoS

Experimental properties of hypernuclei

Gal et al., RMP (2016)

◮ ∼ 40 Λ-hypernuclei
+ measurement of binding energy

◮ only one unambiguous ΛΛ-hypernuclei:
measurement of the bond energy:

∆BΛΛ(
6
ΛΛHe) = 0.67 ± 0.17 MeV.

◮ few Ξ-hypernuclei
but no measurement of binding energy

◮ no Σ-hypernuclei
repulsive Σ-nucleon interaction?

Usual approach to hyperons

Adjust the couplings for the Λ to reproduce:

◮ the Λ-potential in symm. NM UN
Λ (n0)

◮ the Λ-potential in pure Λ matter UΛ
Λ (n0) or

UΛ
Λ (n0/5)

Fortin, et al. PRC 95 (2017)
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Define two limiting hyperonic NS EOS:

◮ ’minimal hyperonic model’: only Λ
included, calibrated to hypernuclear data.
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Experimentally calibrated hyperonic EoS

Experimental properties of hypernuclei

Gal et al., RMP (2016)

◮ ∼ 40 Λ-hypernuclei
+ measurement of binding energy

◮ only one unambiguous ΛΛ-hypernuclei:
measurement of the bond energy:

∆BΛΛ(
6
ΛΛHe) = 0.67 ± 0.17 MeV.

◮ few Ξ-hypernuclei
but no measurement of binding energy

◮ no Σ-hypernuclei
repulsive Σ-nucleon interaction?

Usual approach to hyperons

Adjust the couplings for the Λ to reproduce:

◮ the Λ-potential in symm. NM UN
Λ (n0)

◮ the Λ-potential in pure Λ matter UΛ
Λ (n0) or

UΛ
Λ (n0/5)

Fortin, et al. PRC 95 (2017)
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Define two limiting hyperonic NS EOS:

◮ ’minimal hyperonic model’: only Λ
included, calibrated to hypernuclear data.

◮ ’maximal hyperonic model’: Σ and Ξ
included in addition

◮ with UN
Ξ (n0, 2/3n0) = −14 MeV

suggested by experiments
◮ UN

Σ (n0) = 0, 30 MeV
◮ without σ∗ and φ-mesons.
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Experimentally calibrated hyperonic EoS

Experimental properties of hypernuclei

Gal et al., RMP (2016)

◮ ∼ 40 Λ-hypernuclei
+ measurement of binding energy

◮ only one unambiguous ΛΛ-hypernuclei:
measurement of the bond energy:

∆BΛΛ(
6
ΛΛHe) = 0.67 ± 0.17 MeV.

◮ few Ξ-hypernuclei
but no measurement of binding energy

◮ no Σ-hypernuclei
repulsive Σ-nucleon interaction?

Usual approach to hyperons

Adjust the couplings for the Λ to reproduce:

◮ the Λ-potential in symm. NM UN
Λ (n0)

◮ the Λ-potential in pure Λ matter UΛ
Λ (n0) or

UΛ
Λ (n0/5)

Fortin, et al. PRC 95 (2017)
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Define two limiting hyperonic NS EOS:

◮ ’minimal hyperonic model’: only Λ
included, calibrated to hypernuclear data.

◮ ’maximal hyperonic model’: Σ and Ξ
included in addition.

→ ∆M
max

≃ 0.2 M⊙.
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Experimentally calibrated hyperonic EoS

Experimental properties of hypernuclei

Gal et al., RMP (2016)

◮ ∼ 40 Λ-hypernuclei
+ measurement of binding energy

◮ only one unambiguous ΛΛ-hypernuclei:
measurement of the bond energy:

∆BΛΛ(
6
ΛΛHe) = 0.67 ± 0.17 MeV.

◮ few Ξ-hypernuclei
but no measurement of binding energy

◮ no Σ-hypernuclei
repulsive Σ-nucleon interaction?

Usual approach to hyperons

Adjust the couplings for the Λ to reproduce:

◮ the Λ-potential in symm. NM UN
Λ (n0)

◮ the Λ-potential in pure Λ matter UΛ
Λ (n0) or

UΛ
Λ (n0/5)

Fortin, et al. PRC 95 (2017)
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no hyperon

RωΛ[SU(6)], RφΛ[SU(6)]

Define two limiting hyperonic NS EOS:

◮ ’minimal hyperonic model’: only Λ
included, calibrated to hypernuclear data.

◮ ’maximal hyperonic model’: Σ and Ξ
included in addition.

→ ∆M
max

≃ 0.2 M⊙.

→ consistency with 2 M⊙ for DDME2 and
DD2 (Fortin+ arXiv:1711.09427 + finite-T )

→ if SU(6) symmetry broken?
∆M

max

∼ 0.4 M⊙. . .
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ΛΛHe) = 0.67 ± 0.17 MeV.
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but no measurement of binding energy
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Adjust the couplings for the Λ to reproduce:
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◮ the Λ-potential in pure Λ matter UΛ
Λ (n0) or

UΛ
Λ (n0/5)
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Define two limiting hyperonic NS EOS:

◮ ’minimal hyperonic model’: only Λ
included, calibrated to hypernuclear data.

◮ ’maximal hyperonic model’: Σ and Ξ
included in addition.

→ ∆M
max

≃ 0.2 M⊙.

→ consistency with 2 M⊙ for DDME2 and
DD2 (Fortin+ arXiv:1711.09427 + finite-T )

→ if SU(6) symmetry broken?
∆M

max

∼ 0.4 M⊙. . .

How to reduce ∆M
max

?

◮ experimental constraints on the Ξ and Σ
hyperons

◮ astrophysical constraints?

Hyperons in NSs NOT ruled out by the observa-
tions of 2 M⊙ PSRs.
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Approximate formula for the radius and crust thickness

Zdunik, Fortin, and Haensel, A&A (2017)

◮ All you need is . . . : the core EOS down to a
chosen density n

b

with µ(n
b

) = µ
b

.

◮ Obtain the M(R
ore

) relation solving the TOV
equations.

◮ Obtain M(R) with

R = R
ore

/

(

1 − (µb
2

µ0
2 − 1)(R

ore

c2

2GM
− 1)

)

.

2 unknowns

◮ µ0 = 930.4 MeV - minimum energy per
nucleon of a bcc lattice of 56Fe.

◮ µ
b

at the core-crust transition? For
L ∈ [30, 120] MeV, n

b

∈ [0.06,0.10] fm−3

(Ducoin+ PRC 2011)

◮ µ
b

= (P + ρ)/n at n0/2 = 0.08 fm−3

Results

◮ ∆R . 0.2% for M > 1 M⊙

◮ ∆lr . 1% for M > 1 M⊙

+ Formulas for NSs with an accreted crust.

TOV solution for the unified EoS, for the core
EOS

Approximate M(R)
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Mirror nuclei and NS radii

Yang & Piekarewicz PRC (2018)

R
mirr

(Z ,N) = Rp(N, Z )− Rp(Z ,N)

◮ inspired by Brown PRL (2017) for Skyrme
models

◮ 14 RMF models

◮ R
mirr

(50Ni-Ti): correlated with the radius of
low-mass stars.

EOS construction

From Carriere et al. ApJ (2003):

◮ outer crust from BPS

◮ core down to the core-crust transition
density from RPA

◮ in between polytrope with Γ = 4/3.

Fortin, Providência, Pais, in prep.

◮ 9 out of 14 RMF models

◮ Unified EOSs

◮ Approximate approach
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More correlations studied employing ∼ 50 EOS.
Stay tuned!
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Conclusions
◮ joint modeling of INSs and SXTs required;

◮ modeling of SXTs indicates that the DURCA is required: go beyond the minimal
cooling model + constrain on the EOS;

◮ some general trends on baryon SPF can be derived;

◮ more observations of INSs and SXTs;

◮ determination of the mass of some of these NSs.

◮ consistent calculations of the EOS and the SPF gaps.

◮ Fortin et al. PRC 94 (2017): hyperonic RMF EoSs consistent by the existence of
2 M⊙ NSs.

◮ More experimental constraints for hyperons necessary to reduce the ∆M
max

.

◮ Be careful when gluing an EoS for the core to one for the crust!

◮ Use unified EoS:
◮ eg. Douchin & Haensel A&A 2001, BSk EoS (Chamel, Fantina et al.),

Sharma et al. A&A 2015
◮ Fortin et al. PRC 94 (2016): 48 unified nucleonic and hyperonic EoSs as

supplemental material + confrontation with nuclear constraints.

◮ Zdunik et al. A&A (2017): very precise formula for M(R) just with the EoS for the
core.

◮ Fortin, Providência, Pais, in prep.: extensive study of correlations between
properties of nuclei and of neutron stars.
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