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This talk

Aim is to cover (at least some of) the astrophysics background
relevant for continuous gravitational wave sources

Want to understand:
* population of sources that may produce continuous GWs
e spins
e (internal) magnetic fields, crust properties (composition,
yielding)
* core temperatures and composition
e particularly accreting neutron stars

Outline:
* neutron star census
e neutron star magnetism
* accreting neutron stars



The Neutron Star Census

Back of the envelope:
supernova rate ~ 0.01 yr-1, lifetime of the Galaxy ~ 1010 yrs

=> ~ 108 neutron stars in the Galaxy

About 3000 known: energy source
Radio pulsars 2635 rotation
Accreting neutron stars ~200 accretion
Thermally-emitting neutron stars ~10 thermal (cooling)
Magnetars 29 magnetic field decay

partly selection effects, but also they are not visible for very long:
~108 yrs in thermal emission (X-rays)
~108 yrs in radio
longer in accreting binaries
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Diversity of observed neutron stars

1. radio pulsars

ATNF pulsar catalog:
http://www.atnf.csiro.au/people/pulsar/psrcat/

show radio pulses at the neutron star spin period (“lighthouse”)
powered by rotational energy as the star spins down

wide range of periods from ~2 ms to ~10 s, and magnetic fields
108—1013 G

young pulsars generally have “pulsar wind nebulae” and/or are in
supernova remnants

young pulsars show glitches




Radio pulsar spin and magnetism
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only a handful of observed
values: all are n<3



Diversity of observed neutron stars

2. gamma-ray pulsars

* The most energetic radio pulsars can be detected in gamma-rays,
with L ~ 10-3 Edot
e Emission from accelerated particles in the magnetosphere

e Fermi dramatically increased the number of known gamma-ray
pulsars to >200

https://confluence.slac.stanford.edu/display/GLAMCOG/
Public+List+of+LAT-Detected+Gamma-Ray+Pulsars



Diversity of observed neutron stars

3. isolated neutron stars

e ROSAT all-sky survey found 7 isolated neutron stars in soft X-
rays (kT ~ 100 eV ~ 108 K)

* they are not radio pulsars, and have high X-ray to optical ratio

e consistent with being isolated, cooling, neutron stars

e often referred to as XDINS

* six of the seven have measured spin periods, ranging from 3-12s

e eROSITA (launching 20187?) should find more



ROSAT PSPC

Diversity of observed neutr

4. central compact objects

* X-ray sources found in supernova remnants

e constant luminosity consistent with young NS, small
blackbody emitting area

e association with SNRs => young age <104 yrs

* no pulsar wind nebula, not radio pulsars

e 3 have measured spins in the range P=0.1-0.4 s, one has a
6.7h periodicity



Diversity of observed neutron stars

9. magnetars

* show gamma-ray and X-ray enhancements on a range of
timescales — short (<1s) gamma-ray bursts to months long
X-ray outbursts

* |luminosity >> rotational energy loss, instead powered by
magnetic field decay

e spin periods 2-12s, dipole fields ~ 1014 G

* 29 magnetars known << number of radio pulsars, but the
magnetar birth rate appears to be a significant fraction
(~0.1) of pulsar birth rate.

http://www.physics.mcgill.ca/~pulsar/magnetar/main.html
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Diversity of obser

. radio pulsars
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central compact objects
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Origin of QPO?
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. X-ray binary neutron stars

Neutron Star

HMXB
companion mass > solar mass < solar mass
NS magnetic field ~1012G 108-10° G
age ~107 yr ~108—109 yr
NS spin seconds — hours typically 2-3 ms
B ~1011-1018 G ~108-10° G

https://heasarc.gsfc.nasa.gov/W3Browse/star-catalog/Imxbcat.html (hmxbcat.html)
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Sources of diversity

B: probably internal toroidal
field, certainly the dipole
field does not give the whole
picture

accretion: spins up the star,
leads to decay of B (?),
changes crust composition

Figure from Graber (2016); data from ATNF catalog



Inferred dipole magnetic field strengths: isolated NSs
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Magnetic fields of accreting neutron stars

- for accreting neutron stars in HMXBs, there are independent methods

that provide a cross-check:
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1. the size of the magnetosphere
depends on the dipole field
strength
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2. cyclotron lines are seen in the B
i, hw .~ 10 keV
X-ray spectrum of several W, ( o2 G)
HMXBs

- generally B~1012G for HMXB neutron stars, although some suggestions
of more strongly magnetized cases (e.g. Ho et al. 2014)



Evidence for non-dipolar fields

- two magnetars with relatively weak dipole magnetic fields

SGR 0418 hasB=7.5x1012G Rea et al. (2010)
Swift J1822 has B=1.3x 1018G  Scholz et al. (2014)

- other types of neutron stars with weaker B have shown magnetar activity

high B radio pulsars:
PSR J1846-0258 (B =5 x 1013 G) Gavriil et al. (2008)

and PSR J1119-6127 (B =4 x 1013 G) Younes et al. (2016)
CCO in RCW 103 Reaetal. (2016)

- pulse profile modelling: e.g. high pulse fraction in Kes 79 CCO => peaked
temperature distribution => subsurface 104G toroidal field to prevent heat

flow except at the poles Shabaltas & Lai (2013)

Similar argument for dim isolated NSs Geppert et al. (2006)



Initial conditions for B?

before the crust solidifies the field will be
in MHD equilibrium

— Axisymmetric equilibrium

Toroidal field confined
to closed poloidal lines

Braithwaite & Spruit (2004), Braithwaite (2008)




The crust plays an important role in the observed magnetic activity

the observed magnetic activity is perhaps surprising given the high
conductivity of the interior 4o (
) ~ 1013 yr,

evolution timescales also very long for superconducting core

but you can get short timescales in the crust. Because the ions are
fixed in the solid lattice, the magnetic field is frozen into the electron
fluid (Hall-MHD). The timescale is

L2
tyan =~ 5 % 108 B = ( P ) yr Goldreich & Reisenegger (1992)
Pauc

* Crust yielding (breaking, plastic flow) likely plays a role in mediating
the transfer of magnetic twist from the interior into the
magnetosphere.



Role of crust yielding

* in magnetars, the crust can yield in response to the applied magnetic stress
* crust creep rate is sensitive to the applied stress and temperature

* temperature dependence —> rapid release of stress “thermoplastic wave”
» stress dependence —> non-local yielding
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Neutron star binaries

Not easy to make:

- need kick to prevent binary becoming unbound after supernova

- to accrete, the companion has to be brought into contact —
angular momentum loss from the binary or common envelope
drives the two stars together

- dynamical processes can play a role in GCs or dense
environments

Pulsar binaries are important for mass measurements (+GR tests..)
For continuous GW sources, Low mass X-ray binaries LMXBs are

Interesting as long-lived systems that accrete a substantial amount
of mass and could potentially sustain a mass quadrupole



Low mass X-ray binaries

neutron star
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tidally-distorted companion
M < 1M

4U 1820-30

accretion disk

typical mass transfer rates are
M ~10"" —107°% Mg yr!
~ 1015 L 1018 g S—]

giving an accretion luminosity

- GM
Lx%M VS

Rns
~ 10%° — 10°% erg s

(in outburst) these are
bright X-ray sources

orbital periods range from 10 mins to >days, depending on the type of companion star

binary separation:

2T : o GMtot
Porb B

a/3
or a~ Rg!

an orbital period < 80 mins => a hydrogen poor companion

:>a=9x1m0an(

1/3 P, 2/3
) (55)

“ultracompact binary”
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Low mass X-ray binaries have a rich phenomenology

Pulsations

e Most do not show X-ray pulsations => the accretion disk
extends almost to the stellar surface => weak B field ~ 108G

* There is a class of LMXBs with accretion-powered pulsations
=> somewhat stronger fields ~10°-1010 G

Accretion state

* |n a given source, the accretion rate can be extremely variable, including
changes in accretion state / geometry

a) hard (island) P _— \‘\‘ b) soft (banana)
DISC l ) : DISC J

Accreted composition

e Depending on the orbital period / companion star can range from
solar H/He to pure He or even CONe

HOT FLOW
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Quiescent luminosity of transiently accreting neutron stars
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LIGHT ELEMENTS

envelope
density depth
(g/cm3) heavy element ocean

1 nuclei, e Tcm
105

1. Light elements burn (stably or unstably depending on
accretion rate) to form heavy element ocean

uum
At N —

2. Accretion-driven reactions in the crust process the
incoming material. The crust does not have the ground-
state composition. Energy released heats the core.

core has ~99%
of the mass
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Type | X-ray bursts

* typical properties:

recurrence times ~ hours to days
durations ~ 10-100 seconds

energies ~ 1039-1040 ergs

spectral softening during the tail

* tells us there is a neutron star in the
system

* range of properties consistent with
range of accreted compositions

* NS temporarily outshines the
accretion disk => use to measure
radii

* important because they make the

heavy elements that later become
crust



X-ray burst oscillations

nuclear burning is not
spherically-symmetric =>
rotational modulation at the
spin frequency

Spitkovsky, Ushomirsky & Levin (2002)
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rotationally-supported burning front
during the rise makes sense

but oscillations in the tail are a puzzle
— r-modes (Rossby waves) in the
ocean?

magnetic field should have a
significant effect on the dynamics



Cumulative fraction
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Accreted crust composition

100

— » Accreting crusts are not in
80 |- ¢ the ground state: need to

i i understand the history of
accreted matter
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in the solid phase in a
sequence of electron capture,

pycnonuclear and other
reactions

e Use these captures layers to

obl make a quadrupole
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Multicomponent crusts

H/He burning by the rp-process produces a complex mixture of heavy

elements

This mixture first undergoes chemical separation when freezing

into new crust, likely forms multiple solid domains

Caplan, Horowitz et al.

The multicomponent composition in the crust opens up new

reaction pathways
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How does accretion-induced magnetic field decay occur?

- Not understood, but several proposed mechanisms

- use the crust to dissipate currents

* burial or screening
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Radius in Km

Magnetic field burial / screening in accreting NSs

Key question: how much is B distorted by accretion onto the

magnetic polar cap?
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Summary/Open Issues

e Relation between different types of isolated neutron stars is still open

* Masses, spins and dipole magnetic fields are well-measured (not usually
for the same star)

* Large range in dipole magnetic field strengths, increasing evidence
that internal non-dipolar fields are there as well —> strong magnetar-
like toroidal fields present in many NSs for ~104 yrs

e Neutron stars show magnetic activity. The multicomponent interior
likely drives evolution, particularly in the crust for short timescales.

e Hall effect in the crust can give short timescales but need to balance
magnetic stresses for thousands of years

* How the crust yields as a function of T and stress is important for
magnetar outbursts

* | MXBs are a diverse population: many different orbits, accreted
composition, time-dependence of accretion rate

e Most LMXB neutron stars have no spin measurement

* in a given source, accretion geometry changes between accretion states

e Crust is made of a mixture of many elements

e Buried fields? Need better understanding of spread of accreted matter



