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Introduction: motivation

Today’s key questions:

( )

- What is the minimum, typical, and
; maximum ellipticity one should expect? :
What is the strength (breaking strain) of the

crust?

- How does strain evolve in the crust and

0.012

0.008

3 0.006 |

tress

how does it break? Y,
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/ - What are the implications of observed \
upper limits on the ellipticity?

- At what point do upper limits become
“interesting” (e.g. constrain theory)?

- What are possible mountain building
mechanisms (such as asymmetric accretion,
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Introduction: Theory of Elasticity
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Elastic part of stress tensor

Microphysics: AO‘ik — AO‘ik (’U,ik, . )

{ AO’ik 5 10_3Pe]

For infinitesimal deformations AO',L']€ — )\iklmulm

Elastic coefficients (up to 21)

For cubic crystal 3 independent coefficients (2 for isotropic material):

C11 = )\a:a:a:a:a C12 — )\:cxyya Cq4 — )\a:y:cy



Basic model and scaling

[one component crust — all ions are equal]

Point charges, TF screening: a = (47m,/3)—1/3

lons form BCC lattice
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Beyond scope: Realistic (Jancovici 1962) electron screening [Baiko 2002]
Effects of free neutrons: induced interactions [Kobyakov&Pethick 2016]




Small deformations: Monocrystal

Fuchs (1936) (neglecting screening):

Volume conserving tension:
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Large deformations: Monocrystall

[Baiko&Kozhberov 2017]
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Stress is strongly nonlinear (at certain directions)
Breaking stress is anisotropic (note the difference in scales)
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Small deformatlons Polycrystal

Polycrystalline matter, made of
large number of single crystals,
should be isotropic.
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Shear modulus

Compression modulus

(N

2 .2 O\gi

Ogata&lchimaru (1990): /~L — 0.120 € ;

(averaging velocity of shear waves) eff a E@
2 2 @
Kobyakov&Pethick (2015): 1% = 0.093 47e =
(self consistent theory by Eshelby 1961) a 8



Small deformations: Polycrystal

Numerical experiment: MD simulations by Horowitz&Kadau (2009)
for shear deformations
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Movie and original figure
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Shear stress is almost linear for monocrystal
Effective shear modulus is rather uncertain
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Numerical experiment: MD simulations by Horowitz&Kadau (2009)
[shear deformations]
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[Breakingstrain: )
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Breaking stress:
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Polycrystal: breaking strain and stress are moderately reduced
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Durability of the crust

How long crust can support the stress?

MD simulations AC&Horowitz (2010, 2012) Time-dependent periodic
boundary conditions
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[Breaking stress depends on the temperature and strain rate]




Durability of the crust
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Kinetic theory of strength
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Parameters to be fited to [numerical] experiment

Figure from AC&Horowitz (2010, 2012)



Stress vs durability
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How does the crust break?

In MD simulations In NS

Simulation:  =d2q_G800_e0_0.15_t48000.tra)
I' =800, N =T8608, Z =100, X./a =117, ¢ =0.000780M14, ¢/, =3.125¢-006

Data from: md_G800_e0.00000_0.00078_t249.833. out Str_G800_e0_0.15_t48000.0ut
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=13 Summary &=

The elastic properties of crystal monocrystals are known. They

are anisitropic and nonlinear.[Elastic properties of polycrystalline

(matter are rather uncertain (~28% difference).

Uniform compression/expansion does not lead to breaking

MD simulations (Horowitz&Kadau, AC&Horowitz, Hoffman&Heyl)
suggest that the crust breaks at shear strain ~0.1, corresponding
226277, <107°P.,

Durability of the crusqé is a strong function of the stress and
decreases with increase of temperature. It can lead to

thermoplastic instability (Levin&Beloborodov 2014)

to stress AO’b ~ 0.01

.[The real durability can hardly exceed extrapolation of MD\

simulations [AC&Horowitz 2010,2012], but | would not be

strongly surprised, if in fact it is lower (weakness along edge?)
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Short answers to the Bob’s question



