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Description of the outer crust of a neutron star

Main assumptions:
cold “catalyzed” matter (full thermodynamic equilibrium)
Harrison, Wakano and Wheeler, Onzième Conseil de Physique Solvay (Stoops,
Brussels, Belgium, 1958) pp 124-146

the crust is stratified into pure layers made of nuclei A
Z X

electrons are ∼ uniformly distributed and are highly degenerate
T < TF ≈ 5.93× 109(γr − 1) K

γr ≡
√

1 + x2
r , xr ≡

pF

mec
≈ 1.00884

(
ρ6Z
A

)1/3

nuclei are arranged on a perfect body-centered cubic lattice

T < Tm ≈ 1.3× 105Z 2
(ρ6

A

)1/3
K ρ6 ≡ ρ/106 g cm−3

Tondeur, A&A 14, 451 (1971)
Baym, Pethick, Sutherland, ApJ 170, 299 (1971)



Experimental “determination” of the outer crust
The composition is completely determined by experimental atomic
masses down to ∼ 200m for a 1.4M� neutron star with a 10 km radius

The physics governing the
structure of atomic nuclei
(magicity) leaves its imprint
on the composition.

Due to β equilibrium and
electric charge neutrality, Z
is more tightly constrained
than N: only a few layers
with Z = 28.

Kreim, Hempel, Lunney, Schaffner-Bielich, Int.J.M.Spec.349-350,63(2013)
Wolf et al.,Phys.Rev.Lett.110,041101(2013)

Deeper in the star, recourse must be made to theoretical models.



Nuclear-energy density functional theory
In the Hartree-Fock-Bogoliubov method with (semi)local effective
interactions of the Skyrme type, nucleons are described by
independent quasiparticles in self-consistent “mean” fields:

∑
σ′

(
h(rrr)σσ′ ∆(rrr)δσσ′

∆(rrr)δσσ′ −h(rrr)σσ′

)(
Ψ1(rrr , σ′)
Ψ2(rrr , σ′)

)
= E

(
Ψ1(rrr , σ)
Ψ2(rrr , σ)

)
h(rrr)σ′σ ≡ −∇∇∇ · B(rrr)∇∇∇δσσ′ + U(rrr)δσσ′ − µδσσ′ − iWWW (rrr) ·∇∇∇×σσσσ′σ is the
single-particle Hamiltonian,

µ is the chemical potential,

∆(rrr) is the potential leading to the formation of pairs.

The HFB equations are highly nonlinear since h(rrr)σ′σ and ∆(rrr) are
determined by the set of occupied wave functions {Ψ1(rrr , σ); Ψ2(rrr , σ)}.

Duguet, Lecture Notes in Physics 879 (Springer-Verlag, 2014), p. 293
Dobaczewski & Nazarewicz, in ”50 years of Nuclear BCS” (World Scientific Publishing,
2013), pp.40-60



Brussels-Montreal Skyrme functionals (BSk)

For application to extreme astrophysical environments, functionals
should reproduce global properties of both finite nuclei and infinite
homogeneous nuclear matter.

Experimental data/constraints:
nuclear masses (rms ∼ 0.5− 0.6 MeV/c2)
nuclear charge radii (rms ∼ 0.03 fm)
symmetry energy 29 ≤ J ≤ 32 MeV
incompressibility Kv = 240± 10 MeV

Many-body calculations using realistic interactions:
equation of state of pure neutron matter
1S0 pairing gaps in nuclear matter
effective masses in nuclear matter
stability against spin and spin-isospin fluctuations

Chamel et al., Acta Phys. Pol. B46, 349(2015)



Neutron-matter stiffness

BSk19, BSk20 and BSk21 were fitted to realistic neutron-matter
equations of state with different of degrees of stiffness:

Goriely, Chamel, Pearson, Phys. Rev. C 82, 035804 (2010).



Symmetry-energy constraint
The functionals BSk22-26 were also fitted to realistic neutron-matter
equations of state but with different values for J = 29− 32 MeV:

Goriely, Chamel, Pearson, Phys.Rev.C 88, 024308 (2013).



Theoretical predictions of the outer crust
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Sr isotopes are the most
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only 0.04% in Earth’s crust

Pearson et al.,Phys.Rev.C83,065810(2011)
Wolf et al.,Phys.Rev.Lett.110,041101(2013)



Role of the symmetry energy

The composition of the outer crust is only slightly influenced by the
density dependence of the symmetry energy S(n).

The proton fraction varies roughly as Yp =
Z
A
∼ 1

2
− (12π2(~c)3P)1/4

8S
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Pearson et al., Eur. Phys. J.A50,43(2014); Pearson et al. in prep.



Equation of state of the outer crust

The pressure, determined by electrons, is almost independent of the
composition. Analytical fits: http://www.ioffe.ru/astro/NSG/BSk/

http://www.ioffe.ru/astro/NSG/BSk/


Compounds in neutron-star crusts?
Multinary ionic compounds made of nuclei with charges {Zi} might
exist in the crust of a neutron star.
Dyson, Ann. Phys.63, 1 (1971); Witten, ApJ 188, 615 (1974)

Favorable conditions:
stability against weak and strong nuclear processes.
Jog&Smith, ApJ 253, 839(1982).

stability against the separation into pure (bcc) phases:

R({Zi/Zj}) ≡
C

Cbcc
f ({Zi})

Z̄

Z 5/3
> 1

where f ({Zi}) is the dimensionless lattice structure function of
the compound and C the corresponding structure constant.
Chamel & Fantina, Phys. Rev. C94, 065802 (2016).

Stellar vs terrestrial compounds: (i) they are made of nuclei; (ii)
electrons form an essentially uniform relativistic Fermi gas.



Substitutional compounds in neutron-star crusts

Compounds with CsCl structure are present at interfaces if Z1 6= Z2.
But they only exist over an extremely small range of pressures.
Chamel&Fantina, Phys. Rev. C94, 065802 (2016).
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Neutron-star crust and nuclear masses

The composition of the outer crust is completely determined by
nuclear masses M ′(A,Z ).

Essentially exact analytical expressions valid for any degree of
relativity of the electron gas and including electrostatic correction:
Chamel&Fantina,Phys.Rev.C94,065802(2016)

In the limit of ultrarelativistic electron Fermi gas:

P1→2 ≈
(µ1→2

e )4

12π2(~c)3 , n̄max
1 ≈ A1

Z1

(µ1→2
e )3

3π2(~c)3 , n̄min
2 ≈ A2

Z2

Z1

A1
n̄max

1

µ1→2
e ≡

[
M ′(A2,Z2)c2

A2
− M ′(A1,Z1)c2

A1

](
Z1

A1
− Z2

A2

)−1

+ mec2

Since n̄min
2 > n̄max

1 in hydrostatic equilibrium, nuclei become more
neutron rich (Z2/A2 < Z1/A1) and less bound with increasing depth.



Description of the inner crust of a neutron star

At density ∼ 4.4× 1011 g cm−3, neutrons drip out of nuclei.

We use the 4th-order Extended Thomas-Fermi+Strutinsky Integral
(ETFSI) approach with the same functional as in the outer crust:

semiclassical expansion in powers of ~2: the energy becomes
a functional of nn(rrr) and np(rrr) and their gradients only.
proton shell effects are added perturbatively (neutron shell
effects are much smaller and therefore neglected).

In order to further speed-up the calculations, clusters are supposed to
be spherical (no pastas) and nn(rrr),np(rrr) are parametrized.

Pearson,Chamel,Pastore,Goriely,Phys.Rev.C91, 018801 (2015).
Pearson,Chamel,Goriely,Ducoin,Phys.Rev.C85,065803(2012).
Onsi,Dutta,Chatri,Goriely,Chamel,Pearson, Phys.Rev.C77,065805 (2008).

The ETFSI method is a computationally very fast approximation to
the full HFB equations with errors of ∼ 10 keV/nucleon.



Structure of the inner crust of a neutron star

With increasing density, clusters keep ∼ the same size but are more
and more dilute, and dissolve at n̄ ∼ 0.07− 0.09 fm−3.

Results for BSk24:
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Proton shell effects in stellar environments

The ordinary nuclear shell structure is altered in dense matter:
Z = 28,82 disappear, while 40,58,92 appear (quenched spin-orbit).

Energy per nucleon obtained with BSk24:
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Role of shell effects and symmetry energy
The composition of the inner crust is strongly influenced by proton
shell effects and the symmetry energy:

Terrestrial abundances:

Zirconium (Z = 40): 0.02%

Cerium (Z = 58): 0.007%



Symmetry energy and proton fraction

The proton fraction Yp of the inner crust is governed by the density
dependence of the symmetry energy S(n): the lower S the lower Yp.
Analytical fits: http://www.ioffe.ru/astro/NSG/BSk/
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Equation of state of the inner crust
The pressure in the inner crust is related to the slope L of the

symmetry energy P ∼ L
3

n2
n

n0
Analytical fits: http://www.ioffe.ru/astro/NSG/BSk/
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Highly-magnetized neutron stars

Some neutron stars are endowed with extremely high surface
magnetic fields ∼ 1014 − 1015 G, as inferred from spin-down and
spectroscopic studies.

According to simulations, the
internal field could reach 1018 G.

Very high magnetic fields are thought to
be at the origin of giant flares observed
in Soft Gamma-ray Repeaters.



Role of a high magnetic field on dense matter?
At the surface of neutron stars B . 2× 1015 G.
The electron motion perpendicular to BBB is quantised
into Landau orbitals with a characteristic scale
am = a0

√
Bat/B, where a0 is the Bohr radius

For B � Bat = m2
ee3c/~3 ' 2.35× 109 G, atoms are expected to

adopt a very elongated shape along BBB and to form linear chains
Ruderman, PRL27, 1306 (1971); Medin&Lai, Phys.Rev. A74, 062508 (2006)

The attractive interaction between these chains could lead to a
transition into a condensed phase with a surface density

ρs ∼ 560AZ−3/5(B/1012 G)6/5 g cm−3

In deeper regions of the crust, matter is very stiff

ρ ≈ ρs

(
1 +

√
P
P0

)
, P0 ' 1.45×1020(B/1012 G)7/5

(
Z
A

)2

dyn cm−2

Lai, Rev.Mod.Phys.73, 629 (2001); Chamel et al., Phys.Rev.C86, 055804 (2012)



The intriguing case of RX J1856.5-3754

X-ray observations with Chandra

Turolla et al., ApJ 603, 265 (2004)
van Adelsberg et al., ApJ 628, 902 (2005)
Trümper (2005), astro-ph/0502457

Recent review: Potekhin et al., Space Sci. Rev. 191, 171 (2015)

The thermal X-ray emission is best fitted by a black body spectrum:
evidence for a condensed surface? The presence of high BBB has found
additional support from recent optical polarimetry measurements.
Mignani et al., MNRAS 465, 492 (2017)



Composition of highly-magnetized crust
The composition changes with B, but not the structure (bcc).
Kozhberov, Astrophys. Space Sci.361, 256 (2016)

Equilibrium nuclides for HFB-24 and B? ≡ B/(4.4 × 1013 G):

Nuclide B?
58Fe(-) 9
66Ni(-) 67
88Sr(+) 859

126Ru(+) 1031
80Ni(-) 1075

128Pd(+) 1445
78Ni(-) 1610
79Cu(-) 1617
64Ni(-) 1668

130Cd(+) 1697
132Sn(+) 1989
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Chamel et al., Prog. Theor. Chem. & Phys. (Springer, 2017), pp 181-191.



Quantum oscillations
The neutron-drip density exhibits typical quantum oscillations.

Example using HFB-24:
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Chamel et al.,Phys.Rev.C91, 065801(2015).
Chamel et al.,J.Phys.:Conf.Ser.724, 012034 (2016).
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Accretion and X-ray binaries
The composition of the crust may be changed by

the fallback of material from the supernova explosion,
the accretion of matter from a stellar companion.

The accretion of matter triggers
explosive thermonuclear reactions
giving rise to X-ray bursts.

Ashes are further processed as they
sink inside the star, releasing heat.



Accreted neutron star crusts
The original crust is buried in the core and replaced by accreted
material with very different properties.

Composition and crustal heating for ashes made of 56Fe:

Results are very sensitive to shell effects (magic number Z = 14)

Fantina,Zdunik,Chamel,Pearson,Haensel,Goriely, in prep.



Compounds in accreted crusts
Various compounds can form from ashes of X-ray bursts:

CsClNaCl

Z1

Z2

Z1

Z2

BaTiO3

Z1

Z2

Z3

Rocksalt: AgNe.
Cesium chloride: AgCa, AgTi, AgCr, AgFe, AgCo, AgNi, AgZn,
AgGe, AgAs, AgSe, AgKr, KrCa, KrTi, KrCr, KrFe, KrCo, KrNi,
KrZn, KrGe, KrAs, KrSe, SeCa, SeTi, SeCr, SeFe, SeCo, SeNi,
SeZn, SeGe, SeAs, AsCa, AsTi, AsCr, AsFe, AsCo, AsNi, AsZn,
AsGe, GeCa, GeTi, GeCr, GeFe, GeCo, GeNi, GeZn, ZnCa,
ZnTi, ZnCr, ZnFe, ZnCo, ZnNi, NiCa, NiTi, NiCr, NiFe, NiCo,
CoCa, CoTi, CoCr, CoFe, FeCa, FeTi, FeCr, CrCa, CrTi, TiCa.
Perovskite: AgNeO3.

Chamel, J. Phys. Conf.S.932, 012039 (2017)



Superfluid flow in a periodic medium

Similarly to superfluid 4He on thin films, superconducting electrons in
solids, or atomic gases in optical lattices, superfluid neutrons in
neutron-star crusts do not flow freely despite the absence of
viscous drag.

The neutron current in the crust rest frame can be written as

jnjnjn = ns
nvnvnvn

vnvnvn is the neutron “superfluid velocity”
ns

n is the neutron “superfluid” or “conduction” density

The neutron superfluid density ns
n is generally not equal to the density

nf
n of free neutrons due to the breaking of translational symmetry.

Recent review:
Chamel, J. Low. Temp. Phys. 189, 328 (2017) - arXiv:1707.07854



Density functional theory in a periodic medium
Floquet-Bloch theorem

I found to my delight that the wave differed from the plane
wave of free electrons only by a periodic modulation.

Bloch, Physics Today 29 (1976), 23-27.

The wave functions satisfy

Ψ1αkkk (rrr + `̀̀, σ) = ei kkk ·̀`̀Ψ1αkkk (rrr , σ)

Ψ2αkkk (rrr + `̀̀, σ) = ei kkk ·̀`̀Ψ2αkkk (rrr , σ)

for any lattice vector `̀̀.

α (band index) accounts for the rotational symmetry around each
lattice site,
kkk (wave vector) accounts for the translational symmetry of the
crystal.

Chamel, Goriely, Pearson, in ”50 years of Nuclear BCS” (World Scientific Publishing,
2013), pp.284-296.



multiband BCS gap equations
Due to proximity effects, superfluidity permeates the clusters so that
∆(rrr) varies smoothly in neutron-star crusts.

In the decoupling approximation Ψ1αkkk ≈ Uαkkkϕαkkk , Ψ2αkkk ≈ Vαkkkϕαkkk ,
where ϕαkkk are single-particle wave functions∑

σ′

h(rrr)σσ′ϕαkkk (rrr , σ′) = εαkkkϕαkkk (rrr , σ),

the HFB equations reduce to the multiband BCS gap equations:

∆αkkk = −1
2

∑
β

∫
d3k ′k ′k ′

(2π)3 v̄pair
αkkkα−kkkβk ′k ′k ′β−k ′k ′k ′

∆βk ′k ′k ′

Eβk ′k ′k ′

where Eαkkk =
√

(εαkkk − µ)2 + ∆2
αkkk and

Uαkkk =
1√
2

√
1 +

εαkkk − µ
Eαkkk

, Vαkkk = − 1√
2

√
1− εαkkk − µ

Eαkkk

Chamel et al., Phys.Rev.C81,045804 (2010).

The errors were found to be very small (a few keV per nucleon).
Pastore et al., PoS(INPC2016)145



Pairing field and local density approximation

Because pairing is highly nonlocal (coherence length ξ � cluster
size), both neutrons bound inside clusters and unbound neutrons
contribute to superfluidity.
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Neutron “conduction” from the band theory
In the BCS regime, the “superfluid” neutron density is given by

ns
n =

mn

24π3~2

∑
α

∫
|∇∇∇kkkεαkkk |2

∆2
αkkk

E3
αkkk

d3k

This is a generalization of Landau’s formula for a periodic medium.

In the weak coupling limit ∆αkkk/µ→ 0, the superfluid density is
completely determined by the shape of the Fermi surface
independently of pairing properties:

ns
n ≈

mn

24π3~2

∑
α

∫
F
|∇∇∇kkkεαkkk |dS(α)

Carter,Chamel,Haensel,Nucl.Phys.A748,675 (2005); Nucl.Phys.A759,441(2005)

Systematic band-structure calculations showed that ns
n ≤ nf

n. At
densities ∼ 0.02− 0.04 fm−3, most neutrons are entrained by the
crust and ns

n/nf
n . 10%.

Chamel,Phys.Rev.C85,035801(2012).



Hydrodynamic approach
strong pairing limit (coherence length� cluster size)
uniform density inside and outside clusters
a fraction δ of neutrons in clusters are superfluid

The superfluidity density is independent of the pairing properties.
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Sedrakian, Astrophys.Spa.Sci.236, 267(1996); Epstein, ApJ333, 880 (1988)

However, the assumption of strong pairing is usually not satified.



Suppression of band structure effects by pairing?
The role of pairing has been recently studied by Watanabe&Pethick
by solving numerically the HFB equations at n̄ = 0.03 fm−3.
But approximations were made:

3D body-centered cubic lattice replaced by a 1D lattice
B(rrr) = ~2/(2mn)

Fourier components of U(rrr) contribute independently
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For realistic pairing gaps ∆ ∼ 1− 1.5 MeV, ns
n/nf

n ∼ 60− 70%.



Role of pairing further examined
full 3D band-structure calculations (body-centered cubic lattice)
same potentials B(rrr) and U(rrr) as those employed in 2012
pairing included in the BCS approximation

ns
n =

mn

24π3~2

∑
α

∫
|∇∇∇kkkεαkkk |2

∆3

E3
αkkk

d3k Eαkkk =
√

(εαkkk − µ)2 + ∆2

Whole range of ∆ considered up to largest possible values:

Adapted from Sedrakian&Clark, arXiv:1802.00017



Role of pairing further examined
full 3D band-structure calculations (body-centered cubic lattice)
same potentials B(rrr) and U(rrr) as those employed in 2012
pairing included in the BCS approximation

∆ (MeV) ∆/εF ns
n/nf

n (%)
3.09 0.169 7.87
2.16 0.118 7.74
1.51 0.0826 7.63
1.06 0.0578 7.56

0.741 0.0405 7.55
0.519 0.0283 7.57
0.363 0.0198 7.61
0.254 0.0139 7.66
0.178 0.00972 7.77
0.125 0.00680 7.76

0 0 7.84

Results obtained using a new computer
code based on a FFT grid of 25× 25× 25
points with up to 1650 bands.

Brillouin zone integrations performed
using up to 65280 points.

Chamel, in prep.

Including pairing is computationally very costly, but results are
essentially the same as those obtained without.



Role of quantum zero point motion and pairing
Kobyakov&Pethick speculated that entrainment could be suppressed
by quantum zero-point motion of ions about their equilibrium position.
Kobyakov&Pethick, Phys. Rev. C 87, 055803 (2013)

∆ (MeV) ns
n/nf

n (%)
3.09 8.24
2.16 8.07
1.51 7.95
1.06 7.88

0.741 7.87
0.519 7.89
0.363 7.93
0.254 7.98
0.178 8.01
0.125 8.04

0 8.10

Results of 3D band-structure
calculations accounting for quantum
zero-point motion of ions via the
Debye-Waller factor using bare ion
mass M.

Entrainment is actually enhanced!
Chamel, in prep.

Quantum zero-point motion of ions is found to be small, and in reality
is suppressed by entrainment (M? > M).

All in all, superfluid neutrons are still strongly entrained by the crust.



Conclusions I

We have calculated the equation of state of neutron-star crusts using
the density functional theory

varying the neutron-matter stiffness (BSk19-21) & symmetry
energy (BSk22-26)
considering catalyzed, highly-magnetized and accreted crusts.

The same functionals have been used to determine the equation of
state of neutron-star cores thus providing a unified description.

Analytical fits:
(including composition & local nucleon distributions)
http://www.ioffe.ru/astro/NSG/BSk/

Perspectives:
Extension to finite temperatures (neutron-star mergers),
Go beyond the single-nucleus approximation,
Allowance for nuclear “pasta” mantle (if any) beneath the crust,

http://www.ioffe.ru/astro/NSG/BSk/


Conclusions II

Superfluid neutrons in neutron-star crusts do not flow freely
similarly to superfluid 4He on thin films, superconducting
electrons in solids, or atomic gases in optical lattices.
3D band-structure calculations show that neither pairing nor
quantum zero-point motion of ions can suppress entrainment.
Entrainment is found to be the strongest (ns

n . 10%nf
n) at

densities ∼ 0.02− 0.04 fm−3.

Perspectives:
Systematic calculations of ns

n using more recent neutron-star
crust models
Extension to finite temperatures
Role of the spatial arrangement of clusters (disorder)


