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Motivation

 Searches for signals from neutron stars are designed for detection
* The same methods are not best suited when one has a candidate
* Parameter estimation (PE) can help in understanding candidates

* Parameter estimation can be modified to allow for alternative signal models

Pulsar timing noise: www.|b.man.ac.uk

Pulsar glitch: Espinoza et al. (2011)
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http://adsabs.harvard.edu/abs/2011MNRAS.414.1679E
http://www.jb.man.ac.uk/~pulsar/Education/Tutorial/tut/node82.html

Search basics 1

* Forasignal from anisolated neutron star we have a source model
h(t;0) where, e.qg., 0 = {f, f, RA,DEC, hy,cos 1,1, ¢}
* Then, given some data d(t), we can compute a likelihood
Pd(D)|H., 8) « e~2(d —M)Id —h)

* More details:

— Prix (2009) “Gravitational Waves from Spinning Neutron Stars”

— Riles (2013) “"Gravitational waves: Sources, detectors and searches”



https://dcc.ligo.org/LIGO-P060039/public
https://www.sciencedirect.com/science/article/pii/S0146641012001093

Search basics 11

Often, searches use a likelihood ratio or Bayes factor

P(d(t)|0,H
a0y =P o

All of the following can often be used interchangeably

— Log-likelihood ratio
— Log-Bayes factor
— Matched filtering amplitude

— Detection statistic

Large values = more likely

Above some threshold = “detected”




PE: Grid based approaches Frequency

* Compute likelihood ratio over a grid of points

Spindown

* Maximum is best estimate for the signal parameters

* If grid spacing ~ “signal size”: uncertainty dominated by grid
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* Grid based approaches best applied in initial search

— Able to set robust upper limits — sometimes analytically 2
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PE: Grid based approaches

* However, grid based approaches become inefficient for parameter estimation

|Il

* Need grid spacing less than the “size of the signa

* Multiple dimensions

* Lots of grid points searched where there is no signal!




PE: MCMC/ Nested sampling

* Solutions to the problem of estimating a high-dimension posterior distribution

* Can be viewed as ‘optimization’ routines, but fundamentally built around

Bayesian data analysis

|deal for non-standard signal searches as no grid required

* Nested sampling already used in the known pulsar searches

— see talk by Matt Pitkin and, e.g. Pitkin et al (2012)



http://iopscience.iop.org/article/10.1088/1742-6596/363/1/012041/meta

Basic PE: Demo

Same computation time

Grid based estimation MCMC-based parameter estimation
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GA & Prix (2018)



https://arxiv.org/pdf/1802.05450.pdf
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ow do you sensitively search for systems that
may have unknown (spin) glitches?”




Glitch-robust searches I

* Glitches could reduce detectability if using standard search techniques

e Glitch-robust detection statistic:

h(e f, f,..) = h(t £, 6f. f,6f,t9,...)

Sma k—l—l t—tg)k+1

_1ef)
235 P =t $ar

k=0 (=0 k=0

See Edwards, Hobbs, & Manchester (2006) for the pulsar equivalent

* Can be applied to any standard search algorithm

* Glitch-robust # search for CWs following a glitch



https://academic.oup.com/mnras/article/372/4/1549/1186764

Glitch-robust searches I1

* One could perform glitch-robust (all-sky/directed/targeted search)
— Aversion already applied in the known pulsar (targeted) searches
— Adding extra parameters to all-sky/directed searches is difficult to justify

— Semi-coherent wide parameter space searches are already less sensitive to
glitch (GA, Prix & Jones (2017))

 MCMC/Nested Sampling methods ideally suited for glitch follow-up
— No metric required to set up a grid

— Natural priors based on astrophysics



https://arxiv.org/abs/1704.00742

Glitch-robust searches 111: Example
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Transient CW

Credit: David Keitel
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Tracking the signal

Hidden Markov model tracking (Vitirbi)

Currently applied to the problem of “spin- 0.5
wandering”

Useful for getting the physics from any
detection

Timing noise
Glitches

Unexpected behaviour
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https://journals.aps.org/prd/pdf/10.1103/PhysRevD.97.043013
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.93.123009

Overview

* Inthe detection era parameter estimation will play a key role

* Inference algorithms (i.e. MCMC, Nested sampling) can greatly improve PE

accuracy (at fixed computational cost)
* Easy to generalise to non-standard signals i.e. glitches, transients
* Get Bayes factors/odds-ratios which allow model selection

* Glitch-robust/PE methods implemented in PyFstat



https://gitlab.aei.uni-hannover.de/GregAshton/PyFstat

