Continuous wave parameter estimation and non-standard signal follow up

Greg Ashton Reinhard Prix & Ian Jones

Motivation

- Searches for signals from neutron stars are designed for detection
- The same methods are not best suited when one has a candidate
- Parameter estimation (PE) can help in understanding candidates
- Parameter estimation can be modified to allow for alternative signal models

Pulsar timing noise: [www.jb.man.ac.uk](http://www.jb.man.ac.uk/~pulsar/Education/Tutorial/tut/node82.html)

Search basics I

• For a signal from an isolated neutron star we have a source model

 $h(t; \theta)$ where, e.g., $\theta = \{f, \dot{f}, RA, DEC, h_0, \cos \iota, \psi, \phi\}$

• Then, given some data $d(t)$, we can compute a *likelihood*

$$
P(d(t)|H_s, \theta) \propto e^{-\frac{1}{2}(d-h)|d-h\rangle}
$$

- More details:
	- [Prix \(2009\) "Gravitational Waves from Spinning Neutron Stars"](https://dcc.ligo.org/LIGO-P060039/public)
	- Riles (2013) "[Gravitational waves: Sources, detectors and](https://www.sciencedirect.com/science/article/pii/S0146641012001093) searches" *³*

Search basics II

- Often, searches use a *likelihood ratio* or *Bayes factor* $\Lambda(d(t); \boldsymbol{\theta}) =$ $P(d(t)|\boldsymbol{\theta}, H_S)$ $P(d(t)|H_N)$ $= B_{S/N}(d(t); \boldsymbol{\theta})$
- All of the following can often be used interchangeably
	- Log-likelihood ratio
	- Log-Bayes factor
	- Matched filtering amplitude
	- Detection statistic
- Large values ⇒ more likely
- Above some threshold ⇒ "detected" *⁴*

PE: Grid based approaches

- Compute likelihood ratio over a grid of points
- Maximum is best estimate for the signal parameters
- If grid spacing \sim "signal size": uncertainty dominated by grid setup
- Else error reflects intrinsic uncertainty of data about the signal
- Grid based approaches best applied in initial search
	- Able to set robust upper limits sometimes analytically $\begin{array}{c} 25 \\ 25 \end{array}$

PE: Grid based approaches

- However, grid based approaches become inefficient for parameter estimation
- Need grid spacing less than the "size of the signal"
- Multiple dimensions f \dot{f} \ddot{f} ሶ \ddot{f}
- Lots of grid points searched where there is no signal!

PE: MCMC/Nested sampling

- Solutions to the problem of estimating a high-dimension posterior distribution
- Can be viewed as 'optimization' routines, but fundamentally built around Bayesian data analysis
- Ideal for non-standard signal searches as no grid required
- Nested sampling already used in the known pulsar searches
	- see talk by Matt Pitkin and, e.g. [Pitkin et al \(2012\)](http://iopscience.iop.org/article/10.1088/1742-6596/363/1/012041/meta)

Basic PE: Demo

Same computation time

"How do you sensitively search for systems that may have unknown (spin) glitches?"

Glitch-robust searches I

- Glitches could reduce detectability if using standard search techniques
- Glitch-robust detection statistic:

$$
h(t;f,\dot{f},\dots) \to h\bigl(t;f,\delta f,\dot{f},\delta \dot{f},t^g,\dots \bigr)
$$

$$
\varphi(t) = 2\pi \sum_{k=0}^{s_{\max}} f^{(k)} \frac{(t - t_{\text{ref}})^{k+1}}{(k+1)!} \to \varphi'(t) = \varphi(t) + 2\pi \sum_{\ell=0}^{N_{\text{g}}} H(t - t_{\ell}^{\text{g}}) \sum_{k=0}^{s_{\max}} \delta f_{\ell}^{(k)} \frac{(t - t_{\ell}^{\text{g}})^{k+1}}{(k+1)!}
$$

See [Edwards, Hobbs, & Manchester \(2006\)](https://academic.oup.com/mnras/article/372/4/1549/1186764) for the pulsar equivalent

- Can be applied to any standard search algorithm
- Glitch-robust ≠ search for CWs following a glitch *¹⁰*

Glitch-robust searches II

- One *could* perform glitch-robust (all-sky/directed/targeted search)
	- A version already applied in the known pulsar (targeted) searches
	- Adding extra parameters to all-sky/directed searches is difficult to justify
	- Semi-coherent wide parameter space searches are already less sensitive to glitch [\(GA, Prix & Jones \(2017\)\)](https://arxiv.org/abs/1704.00742)
- MCMC/Nested Sampling methods ideally suited for glitch follow-up
	- No metric required to set up a grid
	- Natural priors based on astrophysics

Glitch-robust searches III: Example

Transient CW

Credit: David Keitel

Tracking the signal

- Hidden Markov model tracking (Vitirbi)
- Currently applied to the problem of "spin wandering"
- Useful for getting the physics from any detection
	- Timing noise
	- **Glitches**
	- Unexpected behaviour
- [Sun et al., Phys Rev D 97,043013 \(2018\)](https://journals.aps.org/prd/pdf/10.1103/PhysRevD.97.043013)
- [Suvarova, Sun, Melatos](https://journals.aps.org/prd/pdf/10.1103/PhysRevD.93.123009) et al PRD 93 123009 (2016)

Overview

- In the detection era parameter estimation will play a key role
- Inference algorithms (i.e. MCMC, Nested sampling) can greatly improve PE accuracy (at fixed computational cost)
- Easy to generalise to non-standard signals i.e. glitches, transients
- Get Bayes factors/odds-ratios which allow model selection
- Glitch-robust/PE methods implemented in [PyFstat](https://gitlab.aei.uni-hannover.de/GregAshton/PyFstat)