Continuous wave parameter estimation and non-standard signal follow up

Greg Ashton Reinhard Prix & Ian Jones

Motivation

- Searches for signals from neutron stars are designed for detection
- The same methods are not best suited when one has a candidate
- Parameter estimation (PE) can help in understanding candidates
- Parameter estimation can be modified to allow for alternative signal models

Pulsar timing noise: <u>www.jb.man.ac.uk</u>

Search basics I

• For a signal from an isolated neutron star we have a source model

 $h(t; \boldsymbol{\theta})$ where, e.g., $\boldsymbol{\theta} = \{f, \dot{f}, RA, DEC, h_0, \cos \iota, \psi, \phi\}$

• Then, given some data d(t), we can compute a *likelihood*

$$P(d(t)|H_s, \theta) \propto e^{-\frac{1}{2}\langle d-h \rangle |d-h\rangle}$$

- More details:
 - Prix (2009) "Gravitational Waves from Spinning Neutron Stars"
 - Riles (2013) "Gravitational waves: Sources, detectors and searches"

Search basics II

- Often, searches use a likelihood ratio or Bayes factor $\Lambda(d(t); \boldsymbol{\theta}) = \frac{P(d(t)|\boldsymbol{\theta}, H_S)}{P(d(t)|H_N)} = B_{S/N}(d(t); \boldsymbol{\theta})$
- All of the following can often be used interchangeably
 - Log-likelihood ratio
 - Log-Bayes factor
 - Matched filtering amplitude
 - Detection statistic
- Large values \Rightarrow more likely
- Above some threshold ⇒ "detected"

PE: Grid based approaches

- Compute likelihood ratio over a grid of points
- Maximum is best estimate for the signal parameters
- If grid spacing ~ "signal size": uncertainty dominated by grid setup
- Else error reflects intrinsic uncertainty of data about the signal
- Grid based approaches best applied in initial search
 - Able to set robust upper limits sometimes analytically

PE: Grid based approaches

- However, grid based approaches become inefficient for parameter estimation
- Need grid spacing less than the "size of the signal"
- Multiple dimensions

• Lots of grid points searched where there is no signal!

PE: MCMC/Nested sampling

- Solutions to the problem of estimating a high-dimension posterior distribution
- Can be viewed as 'optimization' routines, but fundamentally built around Bayesian data analysis
- Ideal for non-standard signal searches as no grid required
- Nested sampling already used in the known pulsar searches
 - see talk by Matt Pitkin and, e.g. Pitkin et al (2012)

Basic PE: Demo

Same computation time

8

"How do you sensitively search for systems that may have unknown (spin) glitches?"

Glitch-robust searches I

- Glitches could reduce detectability if using standard search techniques
- Glitch-robust detection statistic:

$$h(t;f,\dot{f},\dots) \to h(t;f,\delta f,\dot{f},\delta\dot{f},t^g,\dots)$$

$$\varphi(t) = 2\pi \sum_{k=0}^{s_{\max}} f^{(k)} \frac{(t - t_{\text{ref}})^{k+1}}{(k+1)!} \rightarrow \qquad \varphi'(t) = \varphi(t) + 2\pi \sum_{\ell=0}^{N_g} H(t - t_\ell^g) \sum_{k=0}^{s_{\max}} \delta f_\ell^{(k)} \frac{(t - t_\ell^g)^{k+1}}{(k+1)!}$$

See Edwards, Hobbs, & Manchester (2006) for the pulsar equivalent

- Can be applied to any standard search algorithm
- Glitch-robust ≠ search for CWs following a glitch

Glitch-robust searches II

- One *could* perform glitch-robust (all-sky/directed/targeted search)
 - A version already applied in the known pulsar (targeted) searches
 - Adding extra parameters to all-sky/directed searches is difficult to justify
 - Semi-coherent wide parameter space searches are already less sensitive to glitch (<u>GA, Prix & Jones (2017</u>))
- MCMC/Nested Sampling methods ideally suited for glitch follow-up
 - No metric required to set up a grid
 - Natural priors based on astrophysics

Glitch-robust searches III: Example

12

Transient CW

Credit: David Keitel

Tracking the signal

- Hidden Markov model tracking (Vitirbi)
- Currently applied to the problem of "spinwandering"
- Useful for getting the physics from any detection
 - Timing noise
 - Glitches
 - Unexpected behaviour
- Sun et al., Phys Rev D 97,043013 (2018)
- <u>Suvarova, Sun, Melatos et al PRD 93 123009</u> (2016)

14

Overview

- In the detection era parameter estimation will play a key role
- Inference algorithms (i.e. MCMC, Nested sampling) can greatly improve PE accuracy (at fixed computational cost)
- Easy to generalise to non-standard signals i.e. glitches, transients
- Get Bayes factors/odds-ratios which allow model selection
- Glitch-robust/PE methods implemented in <u>PyFstat</u>