## Solid quark matter

#### Mark Alford Washington University in St. Louis



# Outline

- I Where can solid quark matter occur? Hybrid Stars or Strange Stars
- II Hybrid stars

Crystalline color-superconducting quark matter ("LOFF") Mixed phase ("pasta") at nuclear-quark boundary Chiral density wave / DGR / quarkyonic chiral spiral [not in this talk]

#### III Strange Stars

Strangelet crystal crust (another mixed phase)

IV Where next?

#### Quark matter in compact stars



#### I. Two scenarios for quark matter



Nuclear $\rightarrow$ quark matter transition at high pressure, ( $\mu_{
m crit}$ ,  $p_{
m crit}$ )

#### I. Two scenarios for quark matter



Nuclear $\rightarrow$ quark matter transition at high pressure, ( $\mu_{
m crit}$ ,  $p_{
m crit}$ ) Strange Matter Hypothesis  $Vac \rightarrow QM$ NM QM vac μ 310 MeV  $\mu_{sqm}$ 

Vacuum $\rightarrow$ quark matter transition at  $\mu = \mu_{sqm}$ , p = 0. Strange quark matter (SQM) is the favored phase down to p = 0.

## II. Conventional hypothesis

Transition from nuclear matter to quark matter occurs at high pressure. Compact stars have nuclear crust/mantle, possible quark matter core.



## Color superconducting phases

Attractive QCD interaction  $\Rightarrow$  Cooper pairing of quarks. We expect pairing between *different flavors*.

Quark Cooper pair:  $\langle q_{ia}^{\alpha} q_{ib}^{\beta} \rangle$ 

color 
$$\alpha, \beta = r, g, b$$
  
flavor  $i, j = u, d, s$   
spin  $a, b = \uparrow, \downarrow$ 

Each possible BCS pairing pattern P is an  $18 \times 18$  color-flavor-spin matrix

$$\langle q^lpha_{ia} q^eta_{jb} 
angle_{_{1PI}} = \Delta_P \, P^{lphaeta}_{ij\, ab}$$

The attractive channel is:

space symmetric [s-wave pairing] color antisymmetric [most attractive] spin antisymmetric  $\Rightarrow$  flavor antisymmetric

[isotropic]

Initially we will assume the most symmetric case, where all three flavors are massless.

# Color-flavor-locked ("CFL") quark pairing

Equal number of colors and flavors gives a special pairing pattern, color-flavor locked quark matter (Alford, Rajagopal, Wilczek, hep-ph/9804403)

| $\widetilde{Q}$ | 0 | 0 | 0 | -1        | +1        | -1        | +1        | 0         | 0         |
|-----------------|---|---|---|-----------|-----------|-----------|-----------|-----------|-----------|
|                 | и | d | 5 | d         | u         | S         | u         | 5         | d         |
| u               |   | Δ | Δ |           |           |           |           |           |           |
| d               | Δ |   | Δ |           |           |           |           |           |           |
| 5               | Δ | Δ |   |           |           |           |           |           |           |
| d               |   |   |   |           | $-\Delta$ |           |           |           |           |
| u               |   |   |   | $-\Delta$ |           |           |           |           |           |
| S               |   |   |   |           |           |           | $-\Delta$ |           |           |
| u               |   |   |   |           |           | $-\Delta$ |           |           |           |
| S               |   |   |   |           |           |           |           |           | $-\Delta$ |
| d               |   |   |   |           |           |           |           | $-\Delta$ |           |

#### The real world: $M_s$ and neutrality

In the real world there are three factors that combine to oppose pairing between different flavors.

- 1. Strange quark mass is not infinite nor zero, but intermediate. It depends on density, and ranges between about 500 MeV in the vacuum and about 100 MeV at high density.
- **2.** Neutrality requirement. Bulk quark matter must be neutral with respect to all gauge charges: color and electromagnetism.
- **3.** Weak interaction equilibration. In a compact star there is time for weak interactions to proceed: neutrinos escape and flavor is not conserved.
- These factors favor different densities of u, d, s which *obstructs* pairing between different flavors.

#### **Conjectured QCD phase diagram**



heavy ion collisions: chiral critical point and first-order line compact stars: color superconducting quark matter core

# Mismatched Fermi surfaces vs. Cooper pairing





*s* and *d* quarks near their Fermi surfaces cannot have equal and opposite momenta.

The strange quark mass is the cause of the mismatch.

$$p_{Fd} - p_{Fs} pprox p_{Fd} - p_{Fu} pprox rac{M_s^2}{4\mu}$$

### Cooper pairing vs. the strange quark mass



CFL: Color-flavor-locked phase, favored at the highest densities.

$$\langle q_i^{\alpha} q_j^{\beta} \rangle \sim \delta_i^{\alpha} \delta_j^{\beta} - \delta_j^{\alpha} \delta_i^{\beta} = \epsilon^{\alpha \beta N} \epsilon_{ijN}$$

2SC: Two-flavor pairing phase. May occur at intermediate densities.  $\langle q_i^{\alpha} q_j^{\beta} \rangle \sim \epsilon^{\alpha\beta3} \epsilon_{ij3} \sim (rg - gr)(ud - du)$ 

or: CFL with kaon condensation (CFL- $K^0$ ), crystalline phase (LOFF), *p*-wave "meson" condensates, single-flavor pairing (color-spin locking, ~liq <sup>3</sup>He-B).

# Crystalline (LOFF) superconductivity

When the Fermi momenta are such that one flavor of quark is just barely excluded from pairing with another, it may be favorable to make pairs with a net momentum, so each flavor can be close to its Fermi surface.



Every quark pair in the condensate has the same nonzero total momentum 2q (single plane wave).

#### Free energy comparison of phases



Ginzburg-Landau theory\* of LOFF condensate

arXiv:0709.4635)

Diagonalization of mean field NJL model (Alford, Rajagopal, Schäfer, Schmitt, (Cao, He, Zhuang, arXiv:1502.03392)

\* Curves for CubeX and 2Cube45z use G-L approx far from its area of validity: favored phase at  $M_s^2 \sim 4\mu\Delta$  remains uncertain.

#### Properties of the LOFF crystal

Shear modulus of LOFF crystal is much greater than regular nuclear crust:

$$\begin{split} \nu_{QM} \ = \ \frac{2.47 \, {\rm MeV \, fm^{-3}}}{10 \, {\rm MeV}} \Big(\frac{\Delta}{10 \, {\rm MeV}}\Big)^2 \Big(\frac{\mu}{400 \, {\rm MeV}}\Big)^2 \\ {\rm compare:} \quad \nu_{NM} \ = \ c \frac{n_{\rm ion} (Ze)^2}{a} \sim 0.1 \ {\rm to} \ 20 \, {\rm keV \, fm^{-3}} \end{split}$$

(Mannarelli, Rajagopal, Sharma, hep-ph/0702021)

**Pinning force** of CFL sf vortex to LOFF crystal is "comparable to that on neutron superfluid vortices in a conventional neutron star crust".

## Mixed phase at nuclear/quark interface

If the surface tension is low enough, there will be charge separation at the CFL/nuclear interface.



charge density  $ho = {d\Omega \over d\mu_e}$ 

*Neutral* nuclear matter and *neutral* CFL quark matter can coexist at zero pressure.

But if they have different electrostatic potentials  $\mu_e$  then  $p_{sep} > 0$  and it is preferable\* to form a charge-separated phase with intermediate  $\mu_e$ .

\* unless surface costs are too high, e.g. surface tension, electrostatic energy

Mixed phase vs. surface tension



(Alford, Rajagopal, Reddy, Wilczek, hep-ph/0105009)

Shear modulus for mixed phase with *unpaired* quark matter:  $\nu_{\rm mix} \sim 10 \, \rm keV \, fm^{-3} \, (2 \times 10^{31} \, \rm erg/cm^3) \, (Owen, \, astro-ph/0503399)$ 

## **III. Strange Matter Hypothesis**



## Strangelet crystal crust

At zero pressure, if its surface tension is low enough , strange matter, like nuclear matter, will undergo charge separation and evaporation in to charged droplets.



(Jaikumar, Reddy, Steiner, nucl-th/0507055)

## Charge separation again



charge density  $ho = {d\Omega \over d\mu_e}$ 

*Neutral* quark matter and *neutral* vacuum can coexist at zero pressure.

But if they have different electrostatic potentials  $\mu_e$  then  $p_{sep} > 0$  and it is preferable\* to form a charge-separated phase with intermediate  $\mu_e$ .

\* unless surface costs are too high, e.g. surface tension, electrostatic energy

#### Strange quark matter objects

Similar to nuclear matter objects, if surface tension is low enough.



#### Properties of the strangelet crust

It is qualitatively similar to the crust on a neutron star, except that the nuclei become strangelets with a much lower charge to mass (Z/A) ratio.

- Thickness: could be ~ 10<sup>2</sup> to 10<sup>3</sup> m, but very sensitive to strange matter parameters (surface tension, charge susceptibility, etc).
- Thermal conductivity  $\kappa \sim 300 \text{ MeV}^2$  at  $T \sim 0.1 \text{ MeV}$ , comparable to nuclear crusts
- Shear modulus: similar to nuclear crust? (Reddy and Watts, astro-ph/0609364)
   see talk by Jaikumar

# IV. The future

- What microscopic properties of solid phases are important?
  - Shear modulus, breaking strain
  - Thermal conductivity
  - Melting temperature
  - ▶ ...?
- LOFF phases in hybrid stars:
  - Favored crystal structure as a function of density
  - Pinning of superfluid vortices (glitches)

Mixed nuclear-quark phase in hybrid stars:

- Mixing of other quark matter (or nuclear matter) phases
- ► Favored pasta form as a fn of density (depends on surface tension)

Strangelet crystal crust on strange quark stars:

 Could neutron stars really be quark stars with crust ? Cooling after accretion, X-ray burst oscillations Strangelet pollution problem