Dispersive techniques for lattice analysis

J. Ruiz de Elvira

Institute for Theoretical Physics, University of Bern

Multi-Hadron Systems from Lattice QCD, Seattle, February 6th, 2018

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

æ

Why are dispersive techniques useful for Lattice QCD?

Dispersion relations: advantages and limitations

 \hookrightarrow Roy and Roy-Steiner equations

Dispersive techniques in meson-meson scattering

↔ Roy equation analysis for pion-pion scattering in collaboration with B. G. Martin, B. Kaminski, J.R. Pelaez

Dispersive techniques in meson-nucleon scattering

←→ Roy-Steiner equation analysis for pion-nucleon scattering in collaboration with M. Hoferichter, B. Kubis and U-G. Meißner

Prospects of dispersive techniques for lattice analyses

 \hookrightarrow Roy equation for unphysical pion masses

in collaboration with G. Colangelo

- Effective field theories \Rightarrow systematically improvable but
 - ▷ number of LECs increase rapidly
 - convergence problems: low-lying resonances, strong rescattering effects
- Dispersion relations: analyticity, crossing, unitarity
 - > analitycity constrains the energy depedence of scattering amplitude
 - > crossing symmetry connects different physical regions
 - > unitarity constrains imaginary part
- **Roy(-Steiner) eqs.** =Partial-Wave (Hyberbolic) Dispersion Relations coupled by unitarity and crossing symmetry
 - \hookrightarrow model independent aproach
 - \hookrightarrow analytic continuation for the complex plane \Rightarrow resonances, unphysical regions

Cauchy's Theorem

$$f(s) = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{ds' f(s')}{s' - s}$$

Cauchy's Theorem

$$f(s) = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{ds' f(s')}{s' - s}$$

• Dispersion relation

$$f(s) = \frac{1}{\pi} \int_{\text{cuts}} \frac{ds' \text{Im} f(s')}{s' - s}$$

 \hookrightarrow analyticity

• Dispersion relation

$$f(s) = \frac{1}{\pi} \int_{\text{cuts}} \frac{ds' \text{Im} f(s')}{s' - s}$$

\hookrightarrow analyticity

Subtractions

$$f(s) = f(0) + \frac{s}{\pi} \int_{\text{cuts}} \frac{ds' \text{Im} f(s')}{s'(s'-s)}$$

• Dispersion relation

$$f(s) = \frac{1}{\pi} \int_{\text{cuts}} \frac{ds' \text{Im} f(s')}{s' - s}$$

$\hookrightarrow \textbf{analyticity}$

Subtractions

$$f(s) = f(0) + \frac{s}{\pi} \int_{\text{cuts}} \frac{ds' \text{Im} f(s')}{s'(s'-s)}$$

- Imaginary part from Cutkosky rules → forward direction: optical theorem
- Unitarity for partial waves

$$Im f(s) = \sigma(s)|f(s)|^2, \quad f(s) = \frac{\eta(s)e^{2i\delta_{IJ}(s)} - 1}{2i\sigma(s)}, \quad \sigma(s) = \sqrt{1 - \frac{4m_{\pi}^2}{s}}$$

- $\pi\pi \to \pi\pi \Rightarrow$ fully crossing symmetric in Mandelstam variables *s*, *t*, and $u = 4M_{\pi} s t$
- Start from twice-subtracted fixed-t DRs

$$T'(s,t) = c(t) + \frac{1}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{s'^2} \left[\frac{s^2}{(s'-s)} - \frac{u^2}{(s'-u)} \right] \operatorname{Im} T'(s',t)$$

- Subtraction functions c(t) are determined via crossing symmetry
 - \hookrightarrow functions of the I=0,2 scattering lengths: a_0^0 and a_0^2
- PW-projection and expansion yields the Roy-equations

$$t'_{J}(s) = ST'_{J}(s) + \sum_{J'=0}^{\infty} (2J'+1) \sum_{I'=0,1,2} \int_{4m_{\pi}^{2}}^{\infty} ds' K_{JJ'}^{II'}(s',s) \operatorname{Im} t_{J'}^{I'}(s')$$

• $K_{JJ'}^{II'}(s', s) \equiv$ kernels \Rightarrow analytically known

[Roy (1971)]

Roy equations: range of convergence

- Convergence for T'(s, t) guaranteed for $t < 4m^2$
- Where does the partial wave expansion converge?
- Assumption: Mandelstam analyticity

[Mandelstam (1958,1959)]

$$T(s,t) = \frac{1}{\pi^2} \iint \mathsf{d}s' \mathsf{d}t' \frac{\rho_{st}(s',t')}{(s'-s)(t'-t)} + (t\leftrightarrow u) + (s\leftrightarrow u)$$

- \hookrightarrow integration on the support of the double spectral densities ho
- Boundaries of ρ

- Lehmann ellipses
 - \hookrightarrow largest ellipses, which do not enter any ho

[Lehmann (1958)]

- Roy-equations rigorously valid for a finite energy range
 - \Rightarrow introduce a matching point s_m
- only partial waves with $J \leq J_{max}$ are solved
- Assume isospin limit
- Input
 - High-energy region: $\operatorname{Im} t'_{J}(s)$ for $s \geq s_m$ and for all J
 - Higher partial waves: $\operatorname{Im} t'_{J}(s)$ for $J > J_{\max}$ and for all s
 - Inelasticities η(s)

Output

- Self-consistent solution for $\delta_{IJ}(s)$ for $J \leq J_{max}$ and $s_{th} \leq s \leq s_m$
- Subtraction constants

Roy-equations: existence and uniqueness

- Solution characterized by subtraction constants and high-energy input (a, A)
- Existence and uniqueness depends on δ_i dynamically at s_m

$$m = \sum_{i} m_{i}, \qquad m_{i} = \begin{cases} \left\lfloor \frac{2\delta_{i}(\mathbf{s}_{m})}{\pi} \right\rfloor & \text{if } \delta_{i}(\mathbf{s}_{m}) > 0, \\ -1 & \text{if } \delta_{i}(\mathbf{s}_{m}) < 0, \end{cases}$$
$$|\mathbf{x}| \Rightarrow \text{largest integer} < \mathbf{x}.$$

[Gasser, Wanders 1999, Wanders 2000]

- m = 0, a unique solution exists for any (a, A)
- m > 0, *m*-parameter family of solutions for any (a, A)
- m < 0, only for a specific choice of the input constrained by |m| conditions
- Physical solution characterized by smooth matching

Solution for the $\pi\pi$ S0-wave

Garcia-Martin, Kaminski, Pelaez, JRE (2011)

Dip vs no-dip solutions

• The dip vs no-dip \Rightarrow long-standing controversy

[Pennington, Bugg, Zou, Achasov] · · ·

- \hookrightarrow no clear preference for any of the two scenarios in previous works
- Is it possible to satisfy Roy Equations with a non-dip scenario?

 \hookrightarrow the non-dip scenario is **rejected** by DR

Roy equations and resonance pole parameters

• t_{lJ}(s) known in the Lehmann ellipsis

Resonances

- \hookrightarrow poles on unphysical Riemann sheets
- $S^{\mathbb{I}\mathbb{I}}(s i\epsilon, t) = S^{\mathbb{I}}(s + i\epsilon, t)$ $\hookrightarrow t^{\mathbb{I}\mathbb{I}}_{IJ}(s) = t_{IJ}(s) \cdot (\mathbb{1} + 2i\Sigma(s)t_{IJ}(s))^{-1}$
- Elastic scattering: II RS is known exactly
- Coupled channels

$$\begin{split} t_{lJ}(s) &= \left(\begin{array}{c} t_{lJ}^{(11)}(s) & t_{lJ}^{(12)}(s) \\ t_{lJ}^{(12)}(s) & t_{lJ}^{(22)}(s) \end{array}\right) \\ \Sigma(s) &= \left(\begin{array}{c} \sigma_1(s) & 0 \\ 0 & \sigma_2(s) \end{array}\right) \end{split}$$

 \hookrightarrow III and IV RS require crossed channels

 $t_{IJ}^{\mathbb{IV}}(s) = t_{IJ}^{(11)}(s) - \frac{2i\sigma_2(s)t_{IJ}^{(12)}(s)^2}{1 + 2i\sigma_2(s)t_{IJ}^{(22)}(s)}$

12

*f*₀(980) pole 2010

Roy–Steiner equations for πN : differences to $\pi \pi$ Roy equations

Key differences compared to $\pi\pi$ Roy equations

- Crossing: coupling between $\pi N \to \pi N$ (s-channel) and $\pi \pi \to \bar{N}N$ (t -channel)
 - ⇒ need a different kind of dispersion relations

[Hite, Steiner 1973, Büttiker et al. 2004]

• Unitarity in t-channel, e.g. in single-channel approximation

 \Rightarrow Watson's theorem: phase of $f_{\pm}^{J}(t)$ equals δ_{IJ}

 \hookrightarrow solution in terms of Omnès function

- Large pseudo-physical region in t -channel
 - $\hookrightarrow \bar{K}K$ intermediate states for s-wave in the region of the $f_0(980)$

[Watson 1954]

[Muskhelishvili 1953, Omnès 1958]

Limited range of validity

$$\sqrt{s} \leq \sqrt{s_m} = 1.38 \,\mathrm{GeV}$$

$$\sqrt{t} \le \sqrt{t_m} = 2.00 \,\mathrm{GeV}$$

Input/Constraints

- S- and P-waves above matching point s > s_m (t > t_m)
- Inelasticities
- Higher waves (D-, F-, · · ·)
- Scattering lengths from hadronic atoms

[Baru et al. 2011]

Output

- S- and P-wave phase-shifts at low energies s < s_m (t < t_m)
- Subthreshold parameters
 - \triangleright Pion-nucleon σ -term
 - Nucleon form factor spectral functions
 - ⊳ ChPT LECs

Results: s-channel pw

Results: t-channel pw

Threshold parameters

- Threshold parameters defined as: Re $f'_{l\pm}(s) = q^{2l} \{a'_{l\pm} + b'_{l\pm}q^2 + \cdots \}$
- Extracted from hyperbolic sum rules:

$$a_{0+}^{1/2} = d_{00}^{+} + \frac{g^2}{m_N} + \frac{1}{\pi} \int_{t_{\pi}}^{\infty} \frac{dt'}{t'} \left\{ \left[\ln A^+ \right]_{(M_{\pi},0)} - \left[\ln A^+ \right]_{(0,0)} \right\} + \frac{1}{\pi} \int_{s_+}^{\infty} ds' \left\{ h_+(s') \left[\ln A^+ \right]_{(M_{\pi},0)} - (h_0(s')) \left[\ln A^+ \right]_{(0,0)} \right\},$$

	RS	KH80
$a_{0+}^{1/2} [10^{-3} M_{\pi}^{-1}]$	169.8 ± 2.0	173 ± 3
$a_{0+}^{3/2}$ [10 ⁻³ M_{π}^{-1}]	-86.3 ± 1.8	-101 ± 4
$a_{1+}^{1/2}$ [10 ⁻³ M_{π}^{-3}]	-29.4 ± 1.0	-30 ± 2
$a_{1+}^{3/2}$ [10 ⁻³ M_{π}^{-3}]	211.5 ± 2.8	214 ± 2
$a_{1-}^{1/2} [10^{-3} M_{\pi}^{-3}]$	-70.7 ± 4.1	-81 ± 2
$a_{1-}^{3/2}$ [10 ⁻³ M_{π}^{-3}]	-41.0 ± 1.1	-45 ± 2
$b_{0+}^{1/2} [10^{-3} M_{\pi}^{-3}]$	-35.2 ± 2.2	-18 ± 12
$b_{0+}^{3/2}$ [10 ⁻³ M_{π}^{-3}]	-49.8 ± 1.1	-58 ± 9

• Disagreement in the $a_0^{3/2}$ scattering length in $\sim 4\sigma$

J. Ruiz de Elvira (ITP)

The pion-nucleon σ -term

Scalar form factor of the nucleon: $\sigma(t) = \langle N(p') | \hat{m} (\bar{u}u + \bar{d}d) | N(p) \rangle$

$$t = (p' - p)^2$$
 $\sigma_{\pi N} = \sigma(0)$

- $\sigma_{\pi N}$ measures the light-quark contribution to the nucleon mass
- Unfortunately, no direct experimental access to it
- Only very recent precise lattice results
- Linked to πN via the Cheng-Dashen theorem

[Cheng, Dashen 1971]

$$\frac{F_{\pi}^{2}\bar{D}^{+}(\nu=0,t=2M_{\pi}^{2})}{F_{\pi}^{2}(d_{00}^{+}+2M_{\pi}^{2}d_{01}^{+})+\Delta_{D}} = \underbrace{\sigma(2M_{\pi}^{2})}_{\sigma_{\pi N}+\Delta_{\sigma}} + \Delta_{R}$$

 $|\Delta_R| \lesssim 2 \text{ MeV}$

[Bernard, Kaiser, Meißner 1996]

 $\Delta_D - \Delta_\sigma = (-1.8 \pm 0.2) \text{ MeV}$

[Hoferichter et al. 2012]

• "Canonical value" $\sigma_{\pi N} \sim$ 45 MeV, based on KH80

[Gasser, Leutwyler, Locher, Sainio 1988,1991]

$$\sigma_{\pi N} = F_{\pi}^2 \left(d_{00}^+ + 2M_{\pi}^2 d_{01}^+ \right) + \Delta_D - \Delta_\sigma - \Delta_R$$

subthreshold parameters output of the Roy–Steiner equations

 $d_{00}^{+} = -1.36(3)M_{\pi}^{-1} \quad [\text{KH:} -1.46(10)M_{\pi}^{-1}], \quad d_{01}^{+} = 1.16(2)M_{\pi}^{-3} \quad [\text{KH:} 1.14(2)M_{\pi}^{-3}]$

•
$$\Delta_D - \Delta_\sigma = -(1.8 \pm 0.2) \text{ MeV}$$
 [Hoferichter et al. 2012]
 $|\Delta_R| \lesssim 2 \text{ MeV}$ [Bernard, Kaiser, Meißner 1996]

• Isospin breaking in the CD theorem shifts $\sigma_{\pi N}$ by +3.0 MeV

• Final results: $\sigma_{\pi N} = (59.1 \pm 1.9_{\rm RS} \pm 3.0_{\rm LET}) \text{ MeV} = (59.1 \pm 3.5) \text{ MeV}$ [MH, JRE, Kubis, Meißner]

• $\sigma_{\pi N}$ depends linearly on the scattering lengths: $\sigma_{\pi N} = 59.1 + \sum_{l_s} c_{l_s} \Delta a_{0+}^{l_s}$

- KH input $\Rightarrow \sigma_{\pi N} = 46 \text{ MeV}$
 - \hookrightarrow to be compared with $\sigma_{\pi N} = 45 \text{ MeV}$

[Gasser, Leutwyler, Socher, Sainio 1988]

Comparison with lattice $\sigma_{\pi N}$ results

- Recent lattice determination of $\sigma_{\pi N}$ at (almost) the physical point
 - $\begin{array}{ll} \triangleright \ \mathsf{BMW} & \sigma_{\pi N} = 38(3)(3)\mathsf{MeV} & [\mathsf{Durr\ et\ al.\ 2015}] \\ \triangleright \ \chi \mathsf{QCD} & \sigma_{\pi N} = 44.4(7.4)(2.8)\mathsf{MeV} & [\mathsf{Yang\ et\ al.\ 2015}] \\ \triangleright \ \mathsf{ETMC} & \sigma_{\pi N} = 37.2(2.6)(4.7)\mathsf{MeV} & [\mathsf{Abdel-Rehim\ et\ al.\ 2015}] \\ \triangleright \ \mathsf{RQCD} & \sigma_{\pi N} = 35(6)\mathsf{MeV} & [\mathsf{Bali\ et\ al.\ 2016}] \end{array}$
- The linear dependence of $\sigma_{\pi N}$ on the scattering lengths introduces an additional constraint

- Inconsistent with the hadronic atom phenomenology
 - \hookrightarrow determine the πN scattering lengths on the lattice

J. Ruiz de Elvira (ITP)

Comparison with experimental cross-section data

Unravel the tension around the σ -term comparing with the experimental πN data base

- Generate RS differential cross sections
 - ▷ RS S and P waves
 - ▷ higher partial waves from SAID and KH80
 - EM interactions implemented using Tromborg procedure
- Uncertainties from statistical effects, SL, input variation
 - \triangleright below $T_{\pi} = 50$ MeV uncertainties dominated by scattering length errors
 - \hookrightarrow disentangle RS SL solutions by looking at the data base
- Define:

$$\chi^2_{\mathbf{a}_{0+}^{l}} = \sum_{i,j} \frac{\left(\mathcal{O}^{\exp}_{i,j} - \mathcal{O}^{\mathsf{RS}}_{i,j}(\mathbf{a}_{0+}^{l})\right)^2}{\Delta \mathcal{O}^{\exp 2}_{i,j}}$$

• Discrepancy concentrated in the $\pi^+ p \rightarrow \pi^+ p$ channel

	RS	KH80
$a_{0+}^{1/2}$ [10 ⁻³ M_{π}^{-1}]	169.8 ± 2.0	173 ± 3
$a_{0+}^{3/2}$ [10 ^{−3} M_{π}^{-1}]	-86.3 ± 1.8	-101 ± 4

[Workman et al. 2006,2012, Höhler et al. 1980s]

[Tromborg et al. 1977]

Cross-section data: $\pi^+ p \rightarrow \pi^+ p$ channel

Extracting the σ -term from experimental cross-section data

- Linearized version of RS $d\sigma/d\Omega$ around the HA scattering lengths
- Unbiased fit to the pion-nucleon data base \Rightarrow normalizations constants as fit parameters
- Minimize the χ^2 -like as a function of a_{0+}^l and ζ

$$\chi^{2}(\boldsymbol{a},\boldsymbol{a}_{0},\boldsymbol{\zeta},\boldsymbol{\zeta}_{0},\Delta\boldsymbol{\zeta}_{0}) = \sum_{k=1}^{N} \chi^{2}_{k}(\boldsymbol{a},\boldsymbol{a}_{0},\boldsymbol{\zeta},\boldsymbol{\zeta}_{0},\Delta\boldsymbol{\zeta}_{0}),$$

$$\chi^{2}_{k}(\boldsymbol{a},\boldsymbol{a}_{0},\boldsymbol{\zeta},\boldsymbol{\zeta}_{0},\Delta\boldsymbol{\zeta}_{0}) = \sum_{i,j=1}^{N_{k}} \left(\boldsymbol{\zeta}_{k}^{-1}\sigma(\boldsymbol{W}_{i}^{k},\boldsymbol{a}) - \boldsymbol{\sigma}_{i}^{k}\right) \left(\boldsymbol{C}_{k}^{-1}(\boldsymbol{a}_{0},\boldsymbol{\zeta}_{0},\Delta\boldsymbol{\zeta}_{0})\right)_{ij} \left(\boldsymbol{\zeta}_{k}^{-1}\sigma(\boldsymbol{W}_{j}^{k},\boldsymbol{a}) - \boldsymbol{\sigma}_{j}^{k}\right),$$

$$\left(\boldsymbol{C}_{k}(\boldsymbol{a},\boldsymbol{\zeta}_{0},\Delta\boldsymbol{\zeta}_{0})\right) = \sum_{i,j=1}^{N_{k}} \left(\boldsymbol{\zeta}_{k}^{-1}\sigma(\boldsymbol{W}_{i}^{k},\boldsymbol{a}) - \boldsymbol{\sigma}_{i}^{k}\right) \left(\boldsymbol{W}_{i}^{k},\boldsymbol{a},\boldsymbol{\zeta}_{0},\Delta\boldsymbol{\zeta}_{0}\right)^{2}$$
(1)

$$\left(C_k(\mathbf{a}_0,\boldsymbol{\zeta}_0,\boldsymbol{\Delta}\boldsymbol{\zeta}_0)\right)_{ij} = \delta_{ij} \left(\boldsymbol{\Delta}\sigma_i^k\right)^2 + \sigma(\boldsymbol{W}_i^k,\mathbf{a}_0)\sigma(\boldsymbol{W}_j^k,\mathbf{a}_0) \left(\frac{\boldsymbol{\Delta}\boldsymbol{\zeta}_0,k}{\boldsymbol{\zeta}_{0,k}^2}\right) , \qquad (1)$$

channel	SL combination	result	HA SL	KH80 SL
$\pi^+ p o \pi^+ p$	$a_{0+}^{3/2}$	-84.4 ± 1.5	-86.3 ± 1.8	-101 ± 4
$\pi^- p ightarrow \pi^- p$	$(2a_{0+}^{1/2}+a_{0+}^{3/2})/3$	$\textbf{82.5} \pm \textbf{1.5}$	84.4 ± 1.7	81.6 ± 2.4
$\pi^- p ightarrow \pi^0 n$	$-\sqrt{2}(a_{0+}^{1/2}-a_{0+}^{3/2})/3$	-122.3 ± 3.4	-120.7 ± 1.3	-129.2 ± 2.4

Nucleon form factor spectral functions

• $\pi\pi \to \bar{N}N$ partial waves + F_{π}^{V} pion form factor

 $\hookrightarrow \pi\pi$ contribution to the isovector spectral functions

- Consistent $\pi\pi$ phase shifts in f_1^{\pm} and F_{π}^{V} \hookrightarrow Watson theorem is satisfied
- Modern pion form factor data

[BaBar 2009, KLOE 2012, BESIII 2015]

• Isospin breaking: $m_p - m_n$ in pole terms, subthreshold parameters, consistent $\rho - \omega$ mixing

[Hoferichter, Kubis, JRE, Hammer, Meißner 2016]

$\pi\pi$ continuum and proton radius puzzle

sum rules for the isovector radii:

dii: $\langle r_{L}^{2}$	$\left \frac{2}{2}\right _{M}\rangle^{\nu} = \frac{6}{\pi}\int_{4M_{\pi}^{2}}^{\Lambda}$	$\mathrm{d}t' \frac{\mathrm{Im}G_{E/M}^{v}(t')}{t'^2}$
	$\Lambda=1\text{GeV}$	$\Lambda = 2m_N$
$_{E}^{2}\rangle^{v}$ [fm ²]	0.418(32)	0.405(36)
$_{M}^{2}\rangle^{v}$ [fm ²]	1.83(10)	1.81(11)

۸

• correcting normalization by single heavier resonance: ρ' , ρ'' : reduces the radii only to: $\Delta \langle r_E^2 \rangle^{\nu} = -(0.006 \dots 0.008) \text{ fm}^2$ $\Delta \langle r_M^2 \rangle^{\nu} = -(0.05 \dots 0.07) \text{ fm}^2$

• with $\langle r_E^2 \rangle^n = -0.1161(22) \text{ fm}^2$ (*n* scattering on heavy atoms):

 $\hookrightarrow \text{proton radius puzzle} \Longleftrightarrow \text{isovector radius puzzle}$

 $\langle r_E^2 \rangle^{\nu} = 0.412 \, \text{fm}^2 \, (\mu \text{H})$ vs. $\langle r_E^2 \rangle^{\nu} = 0.442 \, \text{fm}^2$ (CODATA)

mild preference for small proton charge radius

[Hoferichter, Kubis, JRE, Hammer, Meißner 2016]

Matching to ChPT at the subthreshold point:

- Chiral expansion expected to work best at subthreshold point
 - > maximal distance from threshold singularities
 - $ightarrow \pi N$ amplitude can be expanded as polynomial
- Preferred choice for NN scattering due to proximity of relevant kinematic regions

Express the subthreshold parameters in terms of the LECs to $\mathcal{O}(p^4)$

$$d_{00}^{+} = -\frac{2M_{\pi}^{2}(2\ddot{c}_{1} - \ddot{c}_{3})}{F_{\pi}^{2}} + \frac{g_{a}^{2}(3 + 8g_{a}^{2})M_{\pi}^{3}}{64\pi F_{\pi}^{4}} + M_{\pi}^{4} \left\{ \frac{16\ddot{e}_{14}}{F_{\pi}^{2}} - \frac{2c_{1} - c_{3}}{16\pi^{2}F_{\pi}^{4}} \right\}$$

- Chiral πN amplitude to $\mathcal{O}(p^4)$ depends on 13 low-energy constants
- Roy-Steiner system contains 10 subtraction constants
 - ▷ calculate remaining 3 from sum rules
 - ▷ invert the system to solve for LECs

Chiral low-energy constants

	NLO	N ² LO	N ³ LO
c ₁ [GeV ⁻¹]	-0.74 ± 0.02	-1.07 ± 0.02	-1.11 ± 0.03
<i>c</i> ₂ [GeV ^{−1}]	1.81 ± 0.03	3.20 ± 0.03	3.13 ± 0.03
c ₃ [GeV ^{−1}]	-3.61 ± 0.05	-5.32 ± 0.05	-5.61 ± 0.06
c₄ [GeV ^{−1}]	$\textbf{2.17} \pm \textbf{0.03}$	3.56 ± 0.03	4.26 ± 0.04
$ar{d}_1 + ar{d}_2 [{ m GeV}^{-2}]$	—	1.04 ± 0.06	7.42 ± 0.08
\bar{d}_3 [GeV $^{-2}$]	_	-0.48 ± 0.02	-10.46 ± 0.10
<i>d</i> ₅ [GeV ^{−2}]	_	0.14 ± 0.05	0.59 ± 0.05
$ar{d}_{14} - ar{d}_{15} [{ m GeV}^{-2}]$	—	-1.90 ± 0.06	-12.18 ± 0.12
ē₁₄ [GeV ⁻³]	_	_	0.89 ± 0.04
ē ₁₅ [GeV ⁻³]	_	_	-0.97 ± 0.06
ē ₁₆ [GeV ⁻³]	—	—	-2.61 ± 0.03
ē ₁₇ [GeV ⁻³]	_	_	0.01 ± 0.06
ē ₁₈ [GeV ⁻³]	_	_	-4.20 ± 0.05

- Subthreshold errors tiny, chiral expansion dominates uncertainty
- \bar{d}_i at N³LO increase by an order of magnitude

 \hookrightarrow due to terms proportional to $g_A^2(c_3 - c_4) = -16 \text{ GeV}^{-1}$

- \hookrightarrow mimic loop diagrams with Δ degrees of freedom
- What's going on with chiral convergence?
 - \hookrightarrow look at convergence of threshold parameters with LECs fixed at subthreshold point

Convergence of the chiral series

	NLO	N ² LO	N ³ LO	RS
a_{0+}^+ [10 ⁻³ M_{π}^{-1}]	-23.8	0.2	-7.9	-0.9 ± 1.4
a_{0+}^{-} [10 ⁻³ M_{π}^{-1}]	79.4	92.9	59.4	85.4 ± 0.9
a_{1+}^+ [10 ⁻³ M_{π}^{-3}]	102.6	121.2	131.8	131.2 ± 1.7
a_{1+}^{-} [10 ⁻³ M_{π}^{-3}]	-65.2	-75.3	-89.0	-80.3 ± 1.1
a_{1-}^+ [10 ⁻³ M_{π}^{-3}]	-45.0	-47.0	-72.7	-50.9 ± 1.9
a_{1-}^{-} [10 ⁻³ M_{π}^{-3}]	-11.2	-2.8	-22.6	-9.9 ± 1.2
b_{0+}^+ [10 ⁻³ M_{π}^{-3}]	-70.4	-23.3	-44.9	-45.0 ± 1.0
b_{0+}^{-} [10 ⁻³ M_{π}^{-3}]	20.6	23.3	-64.7	4.9 ± 0.8

- N³LO results bad due to large Delta loops
- matching to ChPT with the explicit Δ's
 - \hookrightarrow improvement of the chiral convergence

[Siemens, JRE, Epelbaum, Hoferichter, Krebs, Kubis, Meißner 2016]

Conclusion: lessons for few-nucleon applications

 \hookrightarrow either include the Δ to reduce the size of the loop corrections or use LECs from subthreshold kinematics

 \hookrightarrow error estimates: consider chiral convergence of a given observable, difficult to assign a global chiral error to LECs

The "ruler plot" vs. ChPT

Lattice QCD simulations can be performed at different quark/pion masses

Pion mass dependence of m_N up to NNNLO in ChPT, using

Input from Roy–Steiner solution

 \hookrightarrow range of convergence of the chiral expansion is very limited

 \hookrightarrow huge cancellation amongst terms to produce a linear behavior
- Due to the finite domain of validity not solution up to infinity
- Lattice input for each pion mass:
 - \triangleright high-energy region $s > s_M$
 - ▷ high partial waves for all s
 - ▷ inelasticities
 - \triangleright Matching conditions: $\delta_i(s_M)$ and $\delta'_i(s_M)$
 - \hookrightarrow it seems unlikely the lattice can provide such information, but
- What is the size of the input?
 - \triangleright driving terms $Df_{J}^{l} \equiv$ all input contribution
 - \hookrightarrow check their size for different number of subtractions

$$\operatorname{Re} f_{l\pm}^{l_{s}}(W) = S_{l\pm}^{l_{s}}(W) + K_{s}f(W)_{l\pm}^{l_{s}} + K_{t}f(W)_{l\pm}^{l_{s}} + Df(W)_{l\pm}^{l_{s}}$$

Extrapolation of the solution above s_m

J. Ruiz de Elvira (ITP)

Dispersive techniques for lattice analysis

Conclusions: lesson for lattice results

- Oversubtracted Roy equations
 - > virtually reduce to zero the dependence on high-energy input
 - \hookrightarrow driving terms can be included as uncertainties
- Large number of subtraction constants
 - \rhd uniqueness \Rightarrow free/fixed number of parameters
 - ▷ huge correlations, constraints from sum rules
 - → lattice/ChPT input for threshold/subthreshold parameters
- Extend the range of validity
 - \hookrightarrow Roy equations do not break down abruptly above the boundary of their domain of validity

Thank you

Spare slides

- Low energies: test chiral dynamics in the baryon sector ⇒ low-energy theorems e.g. for the scattering lengths
- Higher energies: resonances, baryon spectrum
- Input for NN scattering: LECs c_i , πNN coupling

- Crossed channel $\pi\pi \to \bar{N}N$: nucleon form factors
 - \Rightarrow probe the structure of the nucleon
 - scalar form factors (S-wave)
 - electromagnetic form factors (P-waves)
 - generalized PDF (D-waves)

 Karlsruhe/Helsinki partial-wave analysis KH80 [Höhler et al. 1980s] \hookrightarrow comprehensive analyticity constraints, old data • Formalism for the extraction of $\sigma_{\pi N}$ via the Cheng–Dashen low-energy theorem \leftrightarrow "canonical value" $\sigma_{\pi N} \sim 45$ MeV, based on KH80 input [Gasser, Leutwyler, Locher, Sainio 1988,1991] GWU/SAID partial-wave analysis [Pavan, Strakovsky, Workman, Arndt 2002] \hookrightarrow much larger value $\sigma_{\pi N} = (64 \pm 8)$ MeV More recently: ChPT in different regularizations (w/ and w/o Δ) [Alarcón et al. 2012] \hookrightarrow fit to PWAs. $\sigma_{\pi N} = 59 \pm 7$ MeV

٩	Karlsruhe/Helsinki partial-wave analysis KH80	[Höhler et al. 1980s]
	\hookrightarrow comprehensive analyticity constraints, old data	
٩	Formalism for the extraction of $\sigma_{\pi N}$ via the Cheng–Dashen low	-energy theorem
	\hookrightarrow "canonical value" $\sigma_{\pi N} \sim$ 45 MeV, based on KH80 input	[Gasser, Leutwyler, Locher, Sainio 1988,1991]
٩	GWU/SAID partial-wave analysis	Pavan, Strakovsky, Workman, Arndt 2002
	\hookrightarrow much larger value $\sigma_{\pi N} = (64 \pm 8)$ MeV	
•	More recently: ChPT in different regularizations (w/ and w/o $\Delta)$	[Alarcón et al. 2012]
	\hookrightarrow fit to PWAs, $\sigma_{\pi N} =$ 59 \pm 7 MeV	
٩	This talk: two new sources of information on low-energy πN sca • Precision extraction of πN scattering lengths from hadronic atom	ttering IS [Baru et al. 2011]
	Roy-equation constraints: analyticity, unitarity, crossing symmetry	

ъ

Hadronic atoms: constraints for πN

- πH/πD: bound state of π⁻ and p/d spectrum sensitive to threshold πN amplitude
- Combined analysis of πH and πD :

$$\begin{aligned} \mathbf{a}_0^+ &\equiv \mathbf{a}^+ = (7.5 \pm 3.1) \cdot 10^{-3} M_\pi^{-1} \\ \mathbf{a}_0^- &\equiv \mathbf{a}^- = (86.0 \pm 0.9) \cdot 10^{-3} M_\pi^{-1} \end{aligned}$$

- \hookrightarrow Large a^+ suggests a large $\sigma_{\pi N}$,
- But: a^+ very sensitive to isospin breaking, PWA based on $\pi^{\pm}p$ channels

 \hookrightarrow use instead

$$\frac{a_{\pi^-\rho} + a_{\pi^+\rho}}{2} = (-0.9 \pm 1.4) \cdot 10^{-3} M_{\pi}^{-1}$$

- Isospin breaking in $\sigma_{\pi N}$ could be important
- We revisit the Cheng-Dashen low-energy theorem

Roy(-Steiner) eqs. =	Partial-Wave (Hyberbolic) Dispersion Relations
	coupled by unitarity and crossing symmetry

- Respect all symmetries: analyticity, unitarity, crossing
- Model independent ⇒ the actual parametrization of the data is irrelevant once it is used in the integral.
- Framework allows for systematic improvements (subtractions, higher partial waves, ...)
- PW(H)DRs help to study processes with high precision:

• $\pi\pi$ -scattering:	[Ananthanarayan et al. (2001), García-Martín et al. (2011)]
• πK -scattering:	[Büttiker et al. (2004)]
• $\gamma\gamma \rightarrow \pi\pi$ scattering:	[Hoferichter et al. (2011)]

Roy-Steiner equations for πN : flow of information

J. Ruiz de Elvira (ITP)

Multi-Hadron Systems from Lattice QCD 45

3

$$\pi^{a}(q) + \mathcal{N}(p) \rightarrow \pi^{b}(q') + \mathcal{N}(p')$$

- Isospin Structure: $T^{ba} = \delta^{ba}T^+ + \epsilon^{ab}T^-$
- Lorentz Structure: $I \in \{+, -\}$ $T' = \overline{u}(p') \left(A' + \frac{p+p'}{2}B'\right) u(p)$ $D' = A' + \nu B', \quad \nu = \frac{s-u}{4m}$
- Isospin basis: $I_s \in \{1/2, 3/2\}$ $\{T^+, T^-\} \Leftrightarrow T^{1/2}, T^{3/2}$
- PW projection: s-channel pw: f^I_{l±} t-channel pw: f^J_±

Bose symmetry \Rightarrow even/odd $J \Leftrightarrow I = +/-$

• s-channel projection:

$$f_{l\pm}^{l}(W) = \frac{1}{16\pi W_{1}} \Big\{ (E+m) \big[A_{l}^{l}(s) + (W-m) B_{l}^{l}(s) \big] + (E-m) \big[-A_{l\pm1}^{l}(s) + (W+m) B_{l\pm1}^{l}(s) \big] \Big\}$$
$$X_{l}^{l}(s) = \int_{-1}^{1} dz_{s} P_{l}(z_{s}) X^{l}(s,t) \Big|_{t=t(s,z_{s})=-2q^{2}(1-z_{s})} \quad \text{for } X \in \{A,B\} \text{ and } W = \sqrt{s}$$

- McDowell symmetry: $f'_{l+}(W) = -f'_{(l+1)-}(-W) \quad \forall l \ge 0$
- t-channel projection:

4

$$\begin{aligned} f_{+}^{J}(t) &= -\frac{1}{4\pi} \int_{0}^{1} \mathrm{d}z_{t} \ P_{J}(z_{t}) \Big\{ \frac{p_{t}^{2}}{(p_{t}q_{t})^{J}} A^{I}(s,t) \Big|_{s=s(t,z_{t})} - \frac{m}{(p_{t}q_{t})^{J-1}} z_{t} B^{I}(s,t) \Big|_{s=s(t,z_{t})} \Big\} & \forall J \ge 0 \\ f_{-}^{J}(t) &= \frac{1}{4\pi} \frac{\sqrt{J(J+1)}}{2J+1} \frac{1}{(p_{t}q_{t})^{J-1}} \int_{0}^{1} \mathrm{d}z_{t} \Big[P_{J-1}(z_{t}) - P_{J+1}(z_{t}) \Big] B^{I}(s,t) \Big|_{s=s(t,z_{t})} & \forall J \ge 1 \end{aligned}$$

• Bose symmetry \Rightarrow even/odd $J \Leftrightarrow I = +/-$

πN -scattering basics: Unitarity relations

• s-channel unitarity relations $(I_{\mathcal{S}} \in \{1/2, 3/2\})$: $\lim f_{l\pm}^{l_{\mathcal{S}}}(W) = q |f_{\pm}^{l_{\mathcal{S}}}(W)|^2 \theta(W-W_+) + \frac{1 - (\eta_{l\pm}^{l_{\mathcal{S}}}(W))^2}{4q} \theta(W-W_{\text{inel}})$

• t-channel unitarity relations: 2-body intermediate states: $\pi\pi + \bar{K}K + \cdots$

$$\operatorname{Im} f_{\pm}^{J}(t) = \sigma_{t}^{\pi} \left(t_{J}^{l_{t}}(t) \right)^{*} f_{\pm}^{J}(t) \, \theta\left(t - t_{\pi} \right) + 2c_{J} \sqrt{2} \, k_{t}^{2J} \sigma_{t}^{K} \left(g_{J}^{l_{t}}(t) \right)^{*} h_{\pm}^{J}(t) \, \theta\left(t - t_{K} \right)$$

• Only linear in $f_{+}^{J}(t) \Rightarrow$ less restrictive

• Hyperbolic DRs: (s - a)(u - a) = b = (s' - a)(u' - a) with $a, b \in \mathbb{R}$

$$\begin{split} A^{+}(s,t;a) &= \frac{1}{\pi} \int_{s_{+}}^{\infty} \mathrm{d}s' \left[\frac{1}{s'-s} + \frac{1}{s'-u} - \frac{1}{s'-a} \right] \operatorname{Im} A^{+}(s',t') + \frac{1}{\pi} \int_{t_{\pi}}^{\infty} \mathrm{d}t' \ \frac{\operatorname{Im} A^{+}(s',t')}{t'-t} \\ B^{+}(s,t;a) &= N^{+}(s,t) + \frac{1}{\pi} \int_{s_{+}}^{\infty} \mathrm{d}s' \left[\frac{1}{s'-s} - \frac{1}{s'-u} \right] \operatorname{Im} B^{+}(s',t') + \frac{1}{\pi} \int_{t_{\pi}}^{\infty} \mathrm{d}t' \ \frac{\nu}{\nu'} \frac{\operatorname{Im} B^{+}(s',t')}{t'-t} \\ N^{+}(s,t) &= g^{2} \left(\frac{1}{m^{2}-s} - \frac{1}{m^{2}-u} \right) \quad \text{similar for } A^{-}, B^{-} \text{ and } N^{-} \text{ [Hite/Steiner (1973)]} \end{split}$$

• Why HDR?

- Combine all physical regions ⇒ crucial for t-channel projection
- Evade double-spectral regions ⇒ the PW decompositions converge
- Range of convergence can be maximized by tuning the free hyperbola parameter a
- No kinematical cuts, manageable kernel functions

- Recipe to derive Roy-Steiner equations:
 - Expand imaginary parts in terms of s- and t-channel partial waves
 - Project onto s- and t-channel partial waves
 - Combine the resulting equations using s- and t-channel PW unitarity relations
- Similar structure to ππ Roy equations
- Validity: assuming Mandelstam analyticity
 - s-channel \Rightarrow optimal for $a = -23.2M_{\pi}^2$

 $s \in [s_{+} = (m + M_{\pi})^2, 97.30 \, M_{\pi}^2] \quad \Leftrightarrow \quad W \in [W_{+} = 1.08 \text{ GeV}, 1.38 \text{ GeV}]$

• t-channel \Rightarrow optimal for $a = -2.71 M_{\pi}^2$

$$t \in [t_{\pi} = 4M_{\pi}^2, 205.45 M_{\pi}^2] \quad \Leftrightarrow \quad \sqrt{t} \in [\sqrt{t_{\pi}} = 0.28 \text{ GeV}, 2.00 \text{ GeV}] \;.$$

Roy-Steiner equations for πN : subtractions

- Subtractions are necessary to ensure the convergence of DR integrals ⇒ asymptotic behavior
- Can be introduced to lessen the dependence of the low-energy solution on the high-energy behavior
- Parametrize high-energy information in (a priori unknown) subtraction constants
 matching to ChPT
- Subthreshold expansion around ν = t = 0

$$\bar{A}^{+}(\nu,t) = \sum_{m,n=0}^{\infty} a_{mn}^{+} \nu^{2m} t^{n} \qquad \bar{B}^{+}(\nu,t) = \sum_{m,n=0}^{\infty} b_{mn}^{+} \nu^{2m+1} t^{n} ,$$

$$\bar{A}^{-}(\nu,t) = \sum_{m,n=0}^{\infty} a_{mn}^{-} \nu^{2m+1} t^{n} \qquad \bar{B}^{-}(\nu,t) = \sum_{m,n=0}^{\infty} b_{mn}^{-} \nu^{2m} t^{n} ,$$

where

$$\begin{split} \bar{A}^+(s,t) &= A^+(s,t) - \frac{g^2}{m} \qquad \bar{B}^+(s,t) = B^+(s,t) - g^2 \left[\frac{1}{m^2 - s} - \frac{1}{m^2 - u} \right] , \\ \bar{A}^-(s,t) &= A^-(s,t) , \qquad \bar{B}^-(s,t) = B^-(s,t) - g^2 \left[\frac{1}{m^2 - s} + \frac{1}{m^2 - u} \right] + \frac{g^2}{2m^2} , \end{split}$$

RS-eqs for πN : subthreshold expansion

• Subthreshold expansion around $\nu = t = 0$

$$\begin{split} A^{+}(\nu,t) &= \frac{g^{2}}{m} + d_{00}^{+} + d_{01}^{+} t + a_{10}^{+}\nu^{2} + \mathcal{O}(\nu^{2}t,t^{2}) \\ A^{-}(\nu,t) &= \nu a_{00}^{-} + a_{01}^{-}\nu t + a_{10}^{-}\nu^{3} + \mathcal{O}(\nu^{5},\nu t^{2},\nu^{3}t) \\ B^{+}(\nu,t) &= g^{2} \frac{4m\nu}{(m^{2} - s_{0})^{2}} + \nu b_{00}^{+} + \mathcal{O}(\nu^{3},\nu t) , \\ B^{-}(\nu,t) &= g^{2} \left[\frac{2}{m^{2} - s_{0}} - \frac{t}{(m^{2} - s_{0})^{2}} \right] - \frac{g^{2}}{2m^{2}} + b_{00}^{-} + b_{01}^{-}t + b_{10}^{-}\nu^{2} + \mathcal{O}(\nu^{2},\nu^{2}t,t^{2}) \end{split}$$

• pseudovector Born terms: $D^{l} = A^{l} + \nu B^{l}$

$$ar{D}^+ = d^+_{00} + d^+_{01}t + d^+_{10}
u^2$$

 $d^+_{mn} = a^+_{mn} + b^+_{m-1,n} \,, \qquad d^-_{mn} = a^-_{mn} + b^-_{mn} \,.$

• Sum rules for subthreshold parameters:

$$d_{00}^{+} = -\frac{g^2}{m} + \frac{1}{\pi} \int_{s_+}^{\infty} ds' \, h_0(s') \left[\operatorname{Im} A^+(s', z'_s) \right]_{(0,0)} + \frac{1}{\pi} \int_{t_{\pi}}^{\infty} \frac{dt'}{t'} \left[\operatorname{Im} A^+(t', z'_t) \right]_{(0,0)}$$
$$h_0(s') = \frac{2}{s' - s_0} - \frac{1}{s' - a}$$

• s-channel subproblem:

- Kernels are diagonal for *I* ∈ {+, -}, but unitarity relations are diagonal for *I*_s ∈ {1/2, 3/2} ⇒ all partial-waves are interrelated
- Once the t-channel PWs are known \Rightarrow Structure similar to $\pi\pi$ Roy-equations

• t-channel subproblem:

- Only higher PWs couple to lower ones
- Only PWs with even or odd J are coupled
- No contribution from f^J₊ to f^{J+1} ⇒ Leads to Muskhelishvili-Omnès problem

s-channel RS equations

$$\begin{split} f_{l+}^{l}(W) &= N_{l+}^{l}(W) + \frac{1}{\pi} \int_{W_{+}}^{\infty} dW' \sum_{l'=0}^{\infty} \left\{ K_{ll'}^{l}(W, W') \operatorname{Im} f_{l'+}^{l}(W') + K_{ll'}^{l}(W, -W') \operatorname{Im} f_{(l'+1)-}^{l}(W') \right\} \\ &+ \frac{1}{\pi} \int_{t_{\pi}}^{\infty} dt' \sum_{J} \left\{ G_{lJ}(W, t') \operatorname{Im} f_{+}^{J}(t') + H_{lJ}(W, t') \operatorname{Im} f_{-}^{J}(t') \right\} \\ &= -f_{(l+1)-}^{l}(-W) \qquad \forall \ l \geq 0 \ , \quad \text{[Hite/Steiner (1973)]} \end{split}$$

• e $K_{ll'}^{l}(W, W')$, $G_{lJ}(W, t')$ and $H_{lJ}(W, t')$ -Kernels: analytically known, e.g. $K_{ll'}^{l}(W, W') = \frac{\delta_{ll'}}{W' - W} + \dots \quad \forall \ l, l' \ge 0$,

• Validity: assuming Mandelstam analyticity \Rightarrow optimal for $a = -23.2M_{\pi}^2$

$$s \in [s_{+} = (m + M_{\pi})^2, 97.30 \, M_{\pi}^2] \quad \Leftrightarrow \quad W \in [W_{+} = 1.08 \text{ GeV}, 1.38 \text{ GeV}]$$

t-channel RS equations

$$\begin{split} f^{J}_{+}(t) &= \tilde{N}^{J}_{+}(t) + \frac{1}{\pi} \int_{W_{+}}^{\infty} dW' \sum_{l=0}^{\infty} \left\{ \tilde{G}_{Jl}(t, W') \ln f^{J}_{l+}(W') + \tilde{G}_{Jl}(t, -W') \ln f^{J}_{(l+1)-}(W') \right\} \\ &+ \frac{1}{\pi} \int_{t_{\pi}}^{\infty} dt' \sum_{J'} \left\{ \tilde{K}^{1}_{JJ'}(t, t') \ln f^{J'}_{+}(t') + \tilde{K}^{2}_{JJ'}(t, t') \ln f^{J'}_{-}(t') \right\} \quad \forall J \ge 0 , \\ f^{J}_{-}(t) &= \tilde{N}^{J}_{-}(t) + \frac{1}{\pi} \int_{W_{+}}^{\infty} dW' \sum_{l=0}^{\infty} \left\{ \tilde{H}_{Jl}(t, W') \ln f^{J}_{l+}(W') + \tilde{H}_{Jl}(t, -W') \ln f^{J}_{(l+1)-}(W') \right\} \\ &+ \frac{1}{\pi} \int_{t_{\pi}}^{\infty} dt' \sum_{J'} \tilde{K}^{3}_{JJ'}(t, t') \ln f^{J'}_{-}(t') \quad \forall J \ge 1 , \end{split}$$

• Validity: assuming Mandelstam analyticity \Rightarrow optimal for $a = -2.71 M_{\pi}^2$

$$t \in [t_{\pi} = 4M_{\pi}^2, 205.45 \, M_{\pi}^2] \quad \Leftrightarrow \quad \sqrt{t} \in [\sqrt{t_{\pi}} = 0.28 \text{ GeV}, 2.00 \text{ GeV}] \;.$$

Solving t-channel: single channel

• Elastic-channel approximation: generic form of the integral equation

$$f(t) = \Delta(t) + (a+bt)(t-4m^2) + \frac{t^2(t-4m^2)}{\pi} \int_{t_{\pi}}^{\infty} dt' \frac{\mathrm{Im} f(t')}{t'(t'^2-4m^2)(t'-t)}$$

- ∆(t): Born terms, s-channel integrals, higher t -channel partial waves ⇒ left-hand cut
- Introduce subtractions at $\nu = t = 0 \Rightarrow$ subthreshold parameters *a*, *b*
- Solution in terms of Omnès function:

$$\begin{split} f(t) &= \Delta(t) + (t - 4m^2)\Omega(t)(1 - t\dot{\Omega}(0))a + t(t - 4m^2)\Omega(t)b \\ &- \Omega(t)\frac{t^2(t - 4m^2)}{\pi} \left\{ \int_{4M_{\pi}^2}^{t_m} dt' \frac{\Delta(t') \ln \Omega(t')^{-1}}{t'^2(t' - 4m^2)(t' - t)} + \int_{t_m}^{\infty} dt' \frac{\Omega(t')^{-1} \ln f(t')}{t'(t' - 4m^2)(t' - t)} \right\} \\ \Omega(t) &= \exp\left\{ \frac{t}{\pi} \int_{t_{\pi}}^{t_m} \frac{dt'}{t'} \frac{\delta(t')}{t' - t} \right\} \end{split}$$

Solving t-channel: input and subtractions

- elastic channel approximation: $\sqrt{t}_m = 0.98 1.1$ GeV, for $t > t_m \ln f_{\perp}^J(t) = 0$
- First step: check consistency with KH80
- Input needed:
 - $\pi\pi$ phase shifts:
 - πN phase shifts: SAID.KH80
 - πN at high energies: Regge model
 - πN parameters: KH80

Caprini, Colangelo, Leutwyler, (in preparation), Madrid group

Arndt et al. 2008, Höhler 1983

Huang et al. 2010

J. Ruiz de Elvira (ITP)

Dispersive techniques for lattice analysis

Multi-Hadron Systems from Lattice QCD

Höhler 1983

Solving t-channel: P-wave results

MO solutions in general consistent with KH80 results

J. Ruiz de Elvira (ITP)

Dispersive techniques for lattice analysis

Image: Image:

Solving t-channel: P, D and F waves up to $\bar{N}N$

J. Ruiz de Elvira (ITP)

Dispersive techniques for lattice analysis

• Generic coupled-channel integral equation

$$\mathbf{f}(t) = \mathbf{\Delta}(t) + \frac{1}{\pi} \int_{t_{\pi}}^{t_{m}} \mathrm{d}t' \frac{T^{*}(t') \mathbf{\Sigma}(t') \mathbf{f}(t')}{t'-t} + \frac{1}{\pi} \int_{t_{m}}^{\infty} \mathrm{d}t' \frac{\mathrm{Im} \, \mathbf{f}(t')}{t'-t}$$

- Formal solution as in the single-channel case (now with Omnès matrix Ω(t))
 - $\begin{array}{l} \Rightarrow \text{ Two-channel Muskhelishvili-Omnès problem} \\ \mathbf{f}(t) = \begin{pmatrix} f^0_+(t) \\ h^0_+(t) \end{pmatrix} \quad \text{Im } \Omega(t) = (T(t))^* \Sigma(t) \Omega(t) \end{array}$
- Two linearly independent solutions Ω_1 , Ω_2
- In general no analytical solution for the Omnès matrix but for its determinant

$$\det \Omega(t) = \exp \left\{ \frac{t}{\pi} \int_{t_{\pi}}^{t_{m}} \mathrm{d}t' \frac{\psi(t')}{t'(t'-t)} \right\} \,.$$

Muskhelishvili 1953

Moussallam 2000

• Input needed:

٩	$\pi\pi$ s-wave partial waves:	Caprini, Colangelo, Leutwyler, (in preparation)
0	$K\bar{K}$ s-wave partial waves:	Büttiker. (2004)
0	πN and KN s-wave pw: SAID, KH80	Arndt et al. 2008, Höhler 1983,
•	πN at high energies: Regge model	Huang et al. 2010
•	πN parameters: KH80	
•	Hyperon couplings from	Jülich model 1989
•	KN subthreshold parameters neglected	

- Two-channel approximation beaks down at $\sqrt{t}_0 = 1.3 \text{ GeV} \Rightarrow 4\pi$ channel
- From t_0 to t = 2 GeV, different approximations considered

Solving t-channel: S-wave results

MO solutions in general consistent with KH80 results

General form of the s-channel integral equation

$$f_{l+}^{l}(W) = \Delta_{l+}^{l}(W) + \frac{1}{\pi} \int_{W_{+}}^{\infty} dW' \sum_{l'=0}^{\infty} \left\{ K_{ll'}^{l}(W, W') \operatorname{Im} f_{l'+}^{l}(W') + K_{ll'}^{l}(W, -W') \operatorname{Im} f_{(l'+1)-}^{l}(W') \right\}$$

- \Rightarrow form of $\pi\pi$ Roy-Equations
- $\Delta_{l+}^{\prime}(W) \equiv$ t-channel contribution and pole term
- valid up to W_m = 1.38 GeV
- Input:
 - RS t-channel solutions for S and P waves
 - s-channel partial waves for J > 1
 - s-channel partial waves for $W_m < W < 2.5 \text{ GeV}$
 - high energy contribution for W > 2.5 GeV: Regge model
- Output:
 - Self-consistent solution for S and P waves for $J \leq J_{\max}$ and $s_{ ext{th}} \leq s \leq s_m$
 - Constraints on subtraction constants ⇒ subthreshold parameters

SAID analysis SAID analysis Huang et al. 2010 Existence and uniqueness of solutions

 \Rightarrow no-cusp condition for each pw + 2 additional constraints are needed

Take advantage of the precise data for pionic atoms ۲

⇒ Impose as a **constraint** scattering lengths from a combined analysis of pionic hydrogen and deuterium

$$a_{0+}^{1/2} = (169.8 \pm 2.0) 10^{-3} M_{\pi}^{-1}$$
 $a_{0+}^{3/2} = (-86.3 \pm 1.8) 10^{-3} M_{\pi}^{-1}$

$$\operatorname{\mathsf{Re}} f_{l\pm}^{l}(s) = \mathbf{q}^{2l} \left(a_{l\pm}^{l} + b_{l\pm}^{l} \mathbf{q}^{2} + \cdots \right)$$

10 subthreshold parameters are needed to match d.o.f \Rightarrow three subtractions

J. Ruiz de Elvira (ITP)

Gasser, Wanders 1999

Gotta et al. 2005, 2010

Baru et al. 2011

Solving s-channel: strategy

- Parameterize S and P waves up to W < W_m
 - Using SAID partial waves as starting point
- Impose as constraints the hadronic atom scattering lengths
- Introduce as many subtractions as necessary to match d.o.f
- Minimize difference between LHS and the RHS on a grid of points W_i

$$\chi^{2} = \sum_{l,l_{s},\pm} \sum_{j=1}^{N} \frac{\left(\operatorname{Re} f_{l\pm}^{l_{s}}(W_{j}) - F[f_{l\pm}^{l_{s}}](W_{j})\right)^{2}}{\operatorname{Re} f_{l\pm}^{l_{s}}(W_{j})}$$

 $F[f_{l+}^{l_s}](W_j) \equiv$ right hand side of RS-equations

Parametrization and subthreshold parameters are the fitting parameters

[Gasser, Wanders 1999]

Solving s-channel: results

J. Ruiz de Elvira (ITP)

Results: s-channel PWs

Results: s-channel PWs

Results: t-channel PWs

J. Ruiz de Elvira (ITP)

Multi-Hadron Systems from Lattice QCD 70

- Full solution: self-consistent, iterative solution of the full RS system ⇒ consistent set of s- and t-channel PWs & low-energy parameters
- However:
 - t-channel RS eqs. depend only weakly on s-channel PWs
 - resulting s-channel PW change little from SAID

A **full solution** can be achieved including in the s-channel RS eqs. the t-channel dependence on the **subthreshold parameters**

Uncertainties

- Statistical errors (at intermediate energies)
 - important correlations between subthreshold parameters
 - ▷ shallow fit minima
 - \Rightarrow Sum rules for subthreshold parameters become essential to reduce the errors
- Input variation (small)
 - small effect for considering s-channel KH80 input
 - \triangleright very small effects from L > 5 s-channel PWs
 - \triangleright small effect from the different S-wave extrapolation for t > 1.3 GeV
 - \triangleright negligible effect of ρ' and ρ''
 - \triangleright very significant effects of the D-waves ($f_2(1275)$)
 - F-waves shown to be negligible
- matching conditions (close to Wm)
- scattering length (SL) errors (on S-waves and subthreshold parameters)
 - \triangleright very important for the $\sigma_{\pi N}$

Uncertainties: Real part t-channel pw

٩	 Karlsruhe-Helsinki analysis KH80 comprehensive analyticity constraints based on fixed-t dispersion relations 	Höhler et al. 1980				
	old experimental data					
•	 Here, an update of KH80 results with modern input HDR increase the range of validity of the equations 					
	• πN scattering length extracted from hadronic atoms \Rightarrow essential for the $\sigma_{\pi N}$					
	Goldberger-Miyazawa-Oehme sum rule:					
	$g^2_{\pi N}/4\pi = 13.7\pm 0.2$	Baru et al. 2011				
	compare: $g_{\pi N}^2/4\pi =$ 14.28	Höhler et al. 1983				

- s-channel PWs from SAID
- $f_2(1275)$ included \Rightarrow sizable effect
- KH80 is internally consistent \Rightarrow RS reproduces KH80 results with KH80 input

Results: s-channel PWs with KH80 input

Results: t-channel PWs with KH80 input

J. Ruiz de Elvira (ITP)

$\sigma_{\pi N}$: comparison with KH80 and SAID

Comparison with KH80

• RS eqs. with KH80 input $\hookrightarrow \sigma_{\pi N} = 46 \text{ MeV}$

 \hookrightarrow to be compared with $\sigma_{\pi N} =$ 45 MeV

 \hookrightarrow KH80 is internally **consistent** but at odd with the modern SL determinations

How are d_{00}^+ and d_{01}^+ extracted in KH80 and SAID?

• Standard approach:

replace d_{00}^+ and d_{01}^+ in favor of threshold parameters: a_{0+}^+ and a_{1+}^+

 \hookrightarrow corrections from PWA via DRs (${\it D}^+$ and ${\it E}^+$)

 a_{1+}^+ D^+ E^+ $\Sigma_d = F_\pi^2 \left(d_{00}^+ + 2M_\pi^2 d_{01}^+ \right)$ Born a_{0+}^+ -133 -7 +352 -91 -72 50 KH80 SAID -127 0 +351 -88 -69 67 diff -1 +3 +6 7 +317

- difference with KH80 due the a_{0+}^+
- Iarge weight of a⁺₁₊ ⇒ It has to be known extremely accurately!
 - \hookrightarrow the difference 132.7 (SAID)/131.2 (RS) translates in 5 MeV in the $\sigma_{\pi N}$

J. Ruiz de Elvira (ITP)

Gasser, Leutwyler, Locher, Sainio 1988

Gasser, Leutwyler, Socher, Sainio 1988, Gasser, Leutwyler, Sainio 1991

• relate $\sigma_{\pi N}$ to strangeness content of the nucleon:

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \frac{\langle N|\bar{u}u + \bar{d}d - 2\bar{s}s|N\rangle}{1 - y} = \frac{\sigma_0}{1 - y}, \quad y \equiv \frac{2\langle N|\bar{s}s|N\rangle}{\langle N|\bar{u}u + \bar{d}d|N\rangle}$$

 $(m_s - m) \left(\bar{u}u + \bar{d}d - 2\bar{s}s \right) \subset$ LQCD produces SU(3) mass splittings:

$$\sigma_{\pi N} = \frac{\sigma_0}{1-y}, \quad \sigma_0 = \frac{\hat{m}}{m_s - \hat{m}} \left(m_{\Xi} + m_{\Sigma} - 2m_N \right) \sim 26 \text{ MeV}$$

higher-order corrections: $\sigma_0 \rightarrow$ (36 \pm 7) MeV

- potentially large effects
 - ▷ from the decuplet
 - ▷ from relativistic corrections (EOMS vs. heavy-baryon)
 - \hookrightarrow may increase to $\sigma_0 = (58 \pm 8) \text{ MeV}$

• Conclusion:

- $\triangleright \sigma_{\pi N} = (59.1 \pm 3.5)$ MeV not incompatible with small y
- ▷ chiral convergence of σ_0 (hence $\langle N|\bar{s}s|N\rangle$) very doubtful

Borasoy, Meißner 1997

Alarcon et al. 2013, Siemens et al. 2016

4 日 2 4 同 2 4 回 2 4 回 2 1 -

Threshold parameters

- Threshold parameters defined as: Re $f'_{l\pm}(s) = q^{2l} \{ a'_{l\pm} + b'_{l\pm} q^2 + \cdots \}$
- Extracted from hyperbolic sum rules

	RS	KH80
$a^+_{0+} [10^{-3} M^{-1}_{\pi}]$	-0.9 ± 1.4	-9.7 ± 1.7
a_{0+}^{-} [10 ⁻³ M_{π}^{-1}]	85.4 ± 0.9	91.3 ± 1.7
a^+_{1+} [10 ⁻³ M^{-3}_{π}]	131.2 ± 1.7	132.7 ± 1.3
a_{1+}^{-} [10^{-3} M_{\pi}^{-3}]	-80.3 ± 1.1	-81.3 ± 1.0
a^+_{1-} [10 ⁻³ M^{-3}_{π}]	-50.9 ± 1.9	-56.7 ± 1.3
a_{1-}^{-} [10 ⁻³ M_{π}^{-3}]	-9.9 ± 1.2	-11.7 ± 1.0
$b^+_{0+} \ [10^{-3} M_\pi^{-3}]$	-45.0 ± 1.0	-44.3 ± 6.7
$b_{0+}^{-}~[10^{-3}M_{\pi}^{-3}]$	$\textbf{4.9} \pm \textbf{0.8}$	13.3 ± 6.0

- Reasonable agreement with KH80 but for the scattering lengths
- Disagreement in the scattering lengths in $\sim 4\sigma$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Assumption: Mandelstam analyticity

 \Rightarrow T(s,t) can be written in terms double spectral densities: ρ_{st} , ρ_{su} , ρ_{ut}

$$T(s,t) = \frac{1}{\pi^2} \iint ds' du' \frac{\rho_{su}(s',u')}{(s'-s)(u'-u)} + \frac{1}{\pi^2} \iint dt' du' \frac{\rho_{tu}(t',u')}{(t'-t)(u'-u)} + \frac{1}{\pi^2} \iint ds' dt' \frac{\rho_{st}(s',t')}{(s'-s)(t'-t)}$$

 \hookrightarrow integration ranges defined by the support of the double spectral densities ho

Boundaries of ρ are given lowest lying intermediate states

- They limit the range of validity of the HDRS:
 - Pw expansion converge
 - $\Rightarrow z = \cos \theta \in$ Lehmann ellipses
 - the hyperbolae (s a)(u a) = b does not enter any double spectral region
 - \Rightarrow for a value of *a*, constraints on *b* yield ranges in s & t

Mandelstam (1958,1959)

Lehmann (1958)

Dispersion relation for the scalar form factor of the nucleon

• Unitarity relation: Im
$$\sigma(t) = \frac{2}{4m^2 - t} \left\{ \frac{3}{4} \sigma_t^\pi (F_\pi^S(t))^* f_+^0(t) + \sigma_t^K (F_K^S(t))^* h_+^0(t) \right\}$$

$$\operatorname{Im} \bigotimes = \operatorname{Im} \bigotimes \left[\begin{array}{c} & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

• Once subtracted dispersion relation: $\sigma(t) = \sigma_{\pi N} + \frac{t}{\pi} \int_{t_{\pi}}^{\infty} dt' \frac{\text{Im}\sigma(t')}{t'(t'-t)}$

• $\Delta_{\sigma} = \sigma(2M_{\pi}^2) - \sigma_{\pi N}$

• t-channel expansion of the subtracted pseudo-Born amplitude

$$\bar{D}(\nu=0,t) = 4\pi \left\{ \frac{1}{p_t^2} \, \bar{t}_0^+(t) + \frac{5}{2} q_t^2 \, \bar{t}_2^+(t) + \frac{27}{8} p_t^2 q_t^4 \, \bar{t}_4^+(t) + \frac{56}{16} p_t^4 q_t^6 \, \bar{t}_6^+(t) + \cdots \right\}$$

• Insert *t*-channel RS equations for Born-term-subtracted amplitudes $\bar{t}_{l}^{+}(t)$

$$\bar{D}(\nu = 0, t) = d_{00}^{+} + d_{01}^{+}t - 16t^{2} \int_{t_{\pi}}^{\infty} dt' \frac{\mathrm{Im}\bar{f}_{0}^{+}(t')}{t'^{2}(t' - 4m^{2})(t' - t)} + \{J \ge 2\} + \{\text{s-channel integral}\}$$

• $\Delta_D = F_{\pi}^2 \left(\bar{D}(\nu = 0, t) - d_{00}^+ + d_{01}^+ t \right)$ from evaluation at $t = 2M_{\pi}^2$

Nucleon scalar form factor

$$\begin{aligned} \Delta_{\sigma} &= (13.9 \pm 0.3) \,\mathrm{MeV} \\ &+ Z_1 \left(\frac{g^2}{4\pi} - 14.28 \right) + Z_2 \left(d_{00}^+ \,M_{\pi} + 1.46 \right) + Z_3 \left(d_{01}^+ \,M_{\pi}^3 - 1.14 \right) + Z_4 \left(b_{00}^+ \,M_{\pi}^3 + 3.54 \right) \\ Z_1 &= 0.36 \,\mathrm{MeV} \;, \qquad Z_2 = 0.57 \,\mathrm{MeV} \;, \qquad Z_3 = 12.0 \,\mathrm{MeV} \;, \qquad Z_4 = -0.81 \,\mathrm{MeV} \end{aligned}$$

• πN amplitude

$$\begin{split} \Delta_{D} &= (12.1 \pm 0.3) \,\mathrm{MeV} \\ &+ \hat{Z}_{1} \left(\frac{g^{2}}{4\pi} - 14.28 \right) + \hat{Z}_{2} \left(d_{00}^{+} M_{\pi} + 1.46 \right) + \hat{Z}_{3} \left(d_{01}^{+} M_{\pi}^{3} - 1.14 \right) + \hat{Z}_{4} \left(b_{00}^{+} M_{\pi}^{3} + 3.54 \right) \\ \hat{Z}_{1} &= 0.42 \,\mathrm{MeV} \;, \qquad \hat{Z}_{2} = 0.67 \,\mathrm{MeV} \;, \qquad \hat{Z}_{3} = 12.0 \,\mathrm{MeV} \;, \qquad \hat{Z}_{4} = -0.77 \,\mathrm{MeV} \end{split}$$

 \hookrightarrow most of the dependence on the πN parameters cancels in the difference

Full Correction

$$\Delta_D - \Delta_\sigma = (-1.8 \pm 0.2) \text{ MeV}$$

• Define as isoscalar as

$$X^{+} \to X^{p} = \frac{1}{2} (X_{\pi^{+}p \to \pi^{+}p} + X_{\pi^{-}p \to \pi^{-}p}), \qquad X \in \{D, d_{00}, d_{01}, a_{0+} \dots\}$$

and "isospin limit" by proton and charged pion

- Assume virtual photons to be removed
 - \hookrightarrow scenario closest to actual πN PWA
- Calculate IV corrections in SU(2) ChPT, mainly due to $\Delta_{\pi} = M_{\pi}^2 M_{\pi^0}^2$
 - For the σ term no differences at O(p³)

$$\sigma_{\pi N} = \sigma_{P} = \sigma_{N} = -4c_{1}M_{\pi^{0}}^{2} - \frac{3g_{A}^{2}M_{\pi^{0}}^{2}}{64\pi F_{\pi}^{2}}(2M_{\pi} + M_{\pi^{0}}) + \mathcal{O}(M_{\pi}^{4})$$

Slope of the scalar form factor

$$\Delta_{\sigma}^{\rho} = \sigma_{\rho} (2M_{\pi}^2) - \sigma_{\rho} = \frac{3g_A^2 M_{\pi}^3}{64\pi F_{\pi}^2} + \frac{g_A^2 M_{\pi} \Delta_{\pi}}{128\pi F_{\pi}^2} \left(-7 + \sqrt{2}\log(3 + 2\sqrt{2}) \right) + \mathcal{O}(M_{\pi}^4)$$

• Similarly for Δ_{D}^{p}

$$\Delta_{D}^{\rho} = F_{\pi}^{2} \left\{ \bar{D}_{\rho} (0, 2M_{\pi}^{2}) - d_{00}^{\rho} - 2M_{\pi}^{2} d_{01}^{\rho} \right\} = \frac{23g_{a}^{2}M_{\pi}^{3}}{384\pi F_{\pi}^{2}} + \frac{g_{a}^{2}M_{\pi}\Delta_{\pi}}{256\pi F_{\pi}^{2}} \left(3 + 4\sqrt{2}\log\left(1 + \sqrt{2}\right) \right) + \mathcal{O}(M_{\pi}^{4})$$

• Taking everything together

$$\sigma_{\pi N} = F_{\pi}^{2} \left(d_{00}^{p} + 2M_{\pi}^{2} d_{01}^{p} \right) - \Delta_{R} + \Delta_{D} - \Delta_{\sigma} + \left(\Delta_{D}^{p} - \Delta_{D} \right) - \left(\Delta_{\sigma}^{p} - \Delta_{\sigma} \right) + \sigma_{p} (2M_{\pi}^{2}) + F_{\pi}^{2} \overline{D}(0, 2M_{\pi}^{2}) = F_{\pi}^{2} \left(d_{00}^{p} + 2M_{\pi}^{2} d_{01}^{p} \right) - \underbrace{\Delta_{R}}_{\leq 2MeV} + \underbrace{\Delta_{D} - \Delta_{\sigma}}_{(-1.8 \pm 0.2)MeV} + \underbrace{\frac{81g_{a}^{2} M_{\pi} \Delta_{\pi}}{256\pi F_{\pi}^{2}}}_{3.4MeV} + \underbrace{\frac{\theta^{2}}{2} F_{\pi}^{2} (4f_{1} + f_{2})}_{(-0.4 \pm 2.2)MeV}$$

 \hookrightarrow sizable corrections from Δ_{π} increasing the value of the $\sigma_{\pi N}$

• Electromagnetic nucleon form factor: $\langle N(p')|j_{em}^{\mu}|N(p)\rangle = \bar{u}(p')\left[F_1^N(t)\gamma^{\mu} + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m_N}F_2^N(t)\right]u(p),$

$$G_E^N(t) = F_1^N(t) + \frac{t}{4m_N^2}F_2^N(t), \quad G_M^N(t) = F_1^N(t) + F_2^N(t).$$

• first inelastic correction from $\pi\pi$ continuum

$$\begin{split} & \text{Im} \ G_{E}^{v}(t) = \frac{q_{t}^{3}}{m_{N}\sqrt{t}} \big(F_{\pi}^{V}(t) \big)^{*} f_{+}^{1}(t) \theta \big(t - t_{\pi} \big) \\ & \text{Im} \ G_{M}^{v}(t) = \frac{q_{t}^{3}}{\sqrt{2t}} \big(F_{\pi}^{V}(t) \big)^{*} f_{-}^{1}(t) \theta \big(t - t_{\pi} \big) \end{split}$$

- \hookrightarrow rigorous constraint fixed from:
 - RS t-channel partial waves
 - ▷ pion form factor
- update of Höhler spectral functions, including also isospin breaking

criticism by Lee et al. 2015

$\pi\pi$ -continuum: $\rho - \omega$ mixing

Isovector and isoscalar nucleon form factor

Chiral Low Energy Constants with Δ 's

	HB-	HB-NN HB- π N		cova	riant	
N ² LO	Q ³	_е 3	Q ³	_е 3	Q ³	ε ³
<i>c</i> 1	-1.08(2)	-1.25(3)	-1.08(2)	-1.24(3)	-1.00(2)	-1.19(4)
<i>c</i> 2	3.26(3)	1.71(1.01)	3.26(3)	1.13(1.02)	2.55(3)	1.14(19)
c3	-5.39(5)	-2.68(84)	-5.39(5)	-2.75(84)	-4.90(5)	-2.56(40)
<i>c</i> ₄	3.62(3)	1.57(16)	3.62(3)	1.58(16)	3.08(3)	1.33(20)
d ₁₊₂	1.02(6)	0.14(17)	1.02(6)	-0.07(18)	1.78(6)	0.62(16)
d ₃	-0.46(2)	-0.84(14)	-0.46(2)	-0.48(15)	-1.12(2)	-1.45(5)
d ₅	0.15(5)	0.80(7)	0.15(5)	0.47(6)	-0.05(5)	0.29(6)
d ₁₄₋₁₅	-1.85(6)	-1.09(30)	-1.85(6)	-0.72(31)	-2.27(6)	-0.98(13)
N ³ LO	Q ⁴	ε^4	Q ⁴	ε^4	Q ⁴	ε^4
<i>c</i> 1	-1.11(3)	-1.11(3)	-1.11(3)	-1.11(3)	-1.12(3)	-1.10(3)
c ₂	3.61(4)	1.41(38)	3.17(3)	1.28(20)	3.35(3)	1.16(20)
<i>c</i> 3	-5.60(6)	-1.88(45)	-5.67(6)	-2.04(39)	-5.70(6)	-2.10(39)
c ₄	4.26(4)	2.03(28)	4.35(4)	2.07(29)	3.97(3)	1.91(27)
d ₁₊₂	6.37(9)	1.78(31)	7.66(9)	2.90(30)	4.70(7)	1.78(24)
d ₃	-9.18(9)	-3.64(36)	-10.77(10)	-5.91(50)	-5.26(5)	-3.25(14)
d5	0.87(5)	1.52(7)	0.59(5)	1.03(7)	0.31(5)	0.66(6)
d ₁₄₋₁₅	-12.56(12)	-4.38(54)	-13.44(12)	-5.17(55)	-8.84(10)	-3.41(41)
e ₁₄	1.16(4)	1.64(10)	0.85(4)	1.12(16)	1.17(4)	1.28(11)
e ₁₅	-2.26(6)	-4.95(15)	-0.83(6)	-3.30(25)	-2.58(7)	-3.07(13)
^e 16	-0.29(3)	4.21(16)	-2.75(3)	1.92(43)	-1.77(3)	1.71(17)
e ₁₇	-0.17(6)	-0.44(6)	0.03(6)	-0.39(7)	-0.45(6)	-0.51(7)
e ₁₈	-3.47(5)	1.34(29)	-4.48(5)	0.67(31)	-1.68(5)	1.30(17)

Dispersive techniques for lattice analysis

 $< \Box$

		HB- <i>NN</i>	HΒ- <i>πN</i>		covariant		RS
N ² LO	Q ³	ε ³	Q ³	ε ³	Q ³	_е 3	
$a_{0+}^+[10^{-3}M_{\pi}^{-1}]$	0.5	-9.8(10.9)	0.5	-0.4(9.2)	-14.8	1.0(17.3)	-0.9(1.4)
$a_{0+}^{-}[10^{-3}M_{\pi}^{-1}]$	92.2	92.7(1.0)	92.9	90.5(9)	89.9	81.7(1.6)	85.4(9)
$a_{1+}^{+}[10^{-3}M_{\pi}^{-3}]$	113.8	125.8(16.7)	121.7	127.2(18.4)	116.4	128.5(9.6)	131.2(1.7)
$a_{1+}^{-}[10^{-3}M_{\pi}^{-3}]$	-74.8	-77.4(2.5)	-75.5	-78.4(2.6)	-75.1	-79.7(3.0)	-80.3(1.1)
$a_{1-}^{+}[10^{-3}M_{\pi}^{-3}]$	-54.1	-53.4(14.1)	-47.0	-52.5(15.8)	-55.5	-52.5(8.5)	-50.9(1.9)
$a_{1-}^{-}[10^{-3}M_{\pi}^{-3}]$	-14.1	-13.1(2.7)	-2.5	-7.8(3.0)	-10.4	-9.7(4.1)	-9.9(1.2)
$b_{0+}^+[10^{-3}M_{\pi}^{-3}]$	-45.7	-38.1(9.6)	-22.1	-23.7(14.4)	-50.9	-34.7(12.1)	-45.0(1.0)
$b_{0+}^{-}[10^{-3}M_{\pi}^{-3}]$	35.9	26.4(1.0)	22.6	17.6(8)	21.6	14.2(2.0)	4.9(8)
N ³ LO	Q ⁴	ε^4	Q ⁴	ε4	Q ⁴	ε ⁴	
$a_{0+}^+[10^{-3}M_{\pi}^{-1}]$	-1.5	-1.5(8.5)	-8.0	1.2(20.4)	-5.7	-0.8(10.3)	-0.9(1.4)
$a_{0+}^{-}[10^{-3}M_{\pi}^{-1}]$	68.5	96.3(2.0)	58.6	70.0(3.3)	83.8	83.6(1.9)	85.4(9)
$a_{1+}^{+}[10^{-3}M_{\pi}^{-3}]$	134.3	136.0(9.7)	132.1	135.2(8.7)	128.0	132.7(9.0)	131.2(1.7)
$a_{1+}^{-}[10^{-3}M_{\pi}^{-3}]$	-80.9	-80.0(3.4)	-90.1	-86.4(2.7)	-78.1	-81.1(3.6)	-80.3(1.1)
$a_{1-}^{+}[10^{-3}M_{\pi}^{-3}]$	-55.7	-47.5(10.5)	-73.7	-56.9(7.1)	-53.5	-51.4(7.9)	-50.9(1.9)
$a_{1-}^{-}[10^{-3}M_{\pi}^{-3}]$	-10.0	-5.6(4.9)	-23.7	-14.4(6.5)	-11.8	-10.4(5.7)	-9.9(1.2)
$b_{0+}^+[10^{-3}M_{\pi}^{-3}]$	-42.2	-31.4(8.1)	-44.5	-32.6(21.3)	-54.7	-33.9(8.5)	-45.0(1.0)
$b_{0+}^{-1}[10^{-3}M_{\pi}^{-3}]$	-31.6	7.1(2.3)	-65.2	-34.1(5.7)	2.3	2.9(2.1)	4.9(8)

▲口▶▲御▶▲臣▶▲臣▶ 臣 のの(?

89

● Fixed-*t* dispersion relations at threshold → GMO sum rule

$$\frac{g^2}{4\pi} = \left(\left(\frac{m_p + m_n}{M_\pi}\right)^2 - 1 \right) \left\{ \left(1 + \frac{M_\pi}{m_p}\right) \frac{M_\pi}{4} \left(a_{\pi^- p} - a_{\pi^+ p}\right) - \frac{M_\pi^2}{2} J^- \right\}$$

= 13.69 ± 0.12 ± 0.15
$$J^- = \frac{1}{4\pi^2} \int_0^\infty dk \frac{\sigma_{\pi^- p}^{\text{ot}}(k) - \sigma_{\pi^+ p}^{\text{ot}}(k)}{\sqrt{M_\pi^2 + k^2}}$$

• J⁻ known very accurately

Ericson et al. 2002, Abaev et al. 2007

other determinations

	de Swart et al. 97	Arndt et al. 94	Ericson et al. 02	Bugg et al. 73	KH80
method	NN	πN	GM0	πN	πN
$g^2/4\pi$	13.54 ± 0.05	13.75 ± 0.15	14.11 ± 0.20	14.30 ± 0.18	14.28

- With KH80 scattering lengths $g^2/4\pi = 14.28$ is reproduced exactly
 - \hookrightarrow discrepancy related to old scattering length values

Effective Lagrangian

$$\mathcal{L} = C_{qq}^{SS} \frac{m_q}{\Lambda^3} \, \bar{\chi} \chi \, \bar{q} q + C_{qq}^{VV} \frac{m_q}{\Lambda^2} \, \bar{\chi} \gamma^{\mu} \chi \, \bar{q} \gamma_{\mu} q + \bar{C}_{gg}^S \frac{\alpha_S}{\Lambda^3} \bar{\chi} \chi G_{\mu\nu} G^{\mu\nu}$$

- WIMP χ Dirac fermion and SM singlet
- Spin-independent cross section at vanishing momentum transfer

$$\sigma_{N}^{SI} = \frac{\mu_{\chi}^{2}}{\Lambda^{4}} \left| \left(\frac{m_{N}}{\Lambda} C_{qq}^{SS} t_{q}^{N} - 12\pi C_{gg}^{S} t_{Q}^{N} \right) + C_{qq}^{VV} t_{V}^{N} \right|^{2}$$

$$\mu_{\chi} = \frac{m_{\chi}m_{N}}{m_{\chi} + m_{N}} \quad f_{q}^{N} = 2 \quad f_{q}^{N} = \frac{\sigma_{\pi N}(1-\xi)}{m_{N}} + \Delta f_{q}^{N}$$

• nucleon-matrix elements dominated by $\sigma_{\pi N}$

Dispersion relations: unitarity

• unitarity \Rightarrow conservation of probability $SS^{\dagger} = S^{\dagger}S = \mathbb{I}$

$$\operatorname{Im} t_{IJ} = \sum_{n} \sigma_{n}(s) t_{IJ}(s)^{n} t_{IJ}(s)^{n*} \Rightarrow \qquad t_{IJ}^{fi}(s) = \frac{\eta_{IJ}^{fi}(s) e^{2i\delta_{IJ}^{II}(s)} - 1}{2i\sigma(s)}$$

for elastic scattering

$$\operatorname{Im} t_{JJ}(s) = \sigma(s) |t_{JJ}(s)|^2 \Rightarrow \operatorname{Im} t_{JJ}^{-1}(s) = -\sigma(s), \qquad \sigma(s) = \sqrt{1 - \frac{4m^2}{s}}$$

- Imt_{IJ} on the physical region known exactly
- Unitarization methods ⇒ estimate Ret_{IJ}

J. Ruiz de Elvira (ITP)

- Assumption for the analytical structure of T needed
 - \hookrightarrow dynamical origin of the singularities

- Singularities have a dynamical origin
 - poles on the real axis
 - $\hookrightarrow \text{bound states}$
 - poles on the the complex plane forbidden by causality
 - \hookrightarrow resonances are poles on higher Riemann sheets
 - physical thresholds

 $T(\mathbf{s}+i\epsilon,t,u) - T(\mathbf{s}-i\epsilon,t,u) = T(\mathbf{s}+i\epsilon,t,u) - T(\mathbf{s}+i\epsilon,t,u)^* = 2i \mathrm{Im}T(\mathbf{s},t,u)$

Schwartz reflection principle: $T(s^*, t, u) = T(s, t, u)^*$

- Unitarity imposes $\text{Im}T(s, t, u) \neq 0$ for s > 0 and s < t
 - $\hookrightarrow \mathsf{cuts} \Rightarrow \mathsf{RHC} \text{ and } \mathsf{LHC}$

- Derived a closed system of Roy–Steiner equations for πN
- Numerical solution and error analysis of the full system of RS eqs.
- Precise determination of the $\sigma_{\pi N}$
 - > Roy-Steiner formalism reproduces KH80 result with KH80 input
 - \triangleright With modern input for scattering lengths and coupling constant $\sigma_{\pi N}$ increases
 - \triangleright results from hadronic atom results compatible with low-energy πN scattering data
- t- channel → nucleon form factor spectral functions sum rules for isovector radii → proton radius puzzle
- Extraction of the ChPT LECs
- Study of the chiral convergence