Spectrum Determination o Results 00 00 Summary

$\rho\pi$ isospin-2 scattering from lattice QCD

Antoni. J. Woss

(for the Hadron Spectrum Collaboration) University of Cambridge, Department of Applied Mathematics and Theoretical Physics

Multi-Hadron Systems from Lattice QCD, 2018 INT 18-70W

AJW is supported by the U.K. Science and Technology Facilities Council (STFC).

Spectrum Determination 0 Results

Summary

Outline

Vector-Pseudoscalar Scattering

Infinite Volume Finite Volume Quantisation Condition

Spectrum Determination Spectrum Determination

Results

Spectra Scattering Amplitudes

Vector-Pseudoscalar	Scattering
000	
00	
0	
Infinite Volume	

Results

Summary

Scattering with non-zero intrinsic spin

• Many scattering processes feature hadrons with non-zero intrinsic spin

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

Scattering with non-zero intrinsic spin

- Many scattering processes feature hadrons with non-zero intrinsic spin
- NN scattering, e.g. ${}^{3}S_{1}$, ${}^{3}D_{1}$ mixing in deuteron

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

Scattering with non-zero intrinsic spin

- Many scattering processes feature hadrons with non-zero intrinsic spin
- NN scattering, e.g. 3S_1 , 3D_1 mixing in deuteron
- $a_1 \rightarrow \rho \pi$
- $b_1 \rightarrow \omega \pi$

Scattering with non-zero intrinsic spin

- Many scattering processes feature hadrons with non-zero intrinsic spin
- NN scattering, e.g. ${}^{3}S_{1}$, ${}^{3}D_{1}$ mixing in deuteron
- $a_1 \rightarrow \rho \pi$
- $b_1 \rightarrow \omega \pi$
- Exotic X, Y, Z states observed decays into V-Ps and V-V channels

Vector-Pseudoscalar	Scattering
000	
00	
0	
Infinite Volume	

Results 00 00 Summary

$ho\pi$ isospin-2

• As a testing ground, $\rho\pi$ in isospin-2

Vector-Pseudoscalar Scattering	Spectrum Determination	Results	Summary
000	0	00	
00		00	
Infinite Volume			

$\rho\pi$ isospin-2

- As a testing ground, $\rho\pi$ in isospin-2
- Expect no bound-states or resonances exotic isospin

Vector-Pseudoscalar Scattering	Spectrum Determination	Results	Summary
000	0	00	
00		00	
Infinite Volume			

$\rho\pi$ isospin-2

<□ > < @ > < \ = > < \ = > < \ = の < @ 4/14

- As a testing ground, $\rho\pi$ in isospin-2
- Expect no bound-states or resonances exotic isospin
- Calculations at SU(3)_F point

Vector-Pseudoscalar Scattering	Spectrum Determination	Results	Summary
000	0	00	
00		00	
0			
Infinite Volume			

$ho\pi$ isospin-2

< □ ▶ < @ ▶ < E ▶ < E ▶ E =
 < ○

- As a testing ground, $\rho\pi$ in isospin-2
- Expect no bound-states or resonances exotic isospin
- Calculations at SU(3)_F point
- Heavy octet pseudoscalars, $m_\pi \sim 700 \, {
 m MeV}$
- Stable octet vectors, $m_
 ho \sim 1020\,{
 m MeV}$

Vector-Pseudoscalar Scattering
000
00
0
Infinites Maluma

Infinite Volume

Spectrum Determination o Results

Summary

Features of vector-pseudoscalar scattering

• Infinite-volume $J^P = \ell \otimes S$ i.e. $\ell \otimes S = |\ell - S| \oplus ... \oplus \ell + S$

Vector-Pseudoscalar Scattering	Spectrum Determination	Results	Summary
000	0	00	
00		00	
0			
Infinite Volume			

Features of vector-pseudoscalar scattering

◆□ ▶ < @ ▶ < E ▶ < E ▶ E = のQC 5/14</p>

- Infinite-volume $J^P = \ell \otimes S$ i.e. $\ell \otimes S = |\ell S| \oplus ... \oplus \ell + S$
- S = 1 and $\ell \ge 1$ triplets of partial-waves $J = \{\ell 1, \ell, \ell + 1\}$

Vector-Pseudoscalar Scattering	Spectrum Determination	Results	Summar
000	0	00	
00		00	
0			
Infinite Volume			

Features of vector-pseudoscalar scattering

• Infinite-volume
$$J^P = \ell \otimes S$$
 i.e. $\ell \otimes S = |\ell - S| \oplus ... \oplus \ell + S$

• S = 1 and $\ell \ge 1$ – triplets of partial-waves $J = \{\ell - 1, \ell, \ell + 1\}$

• $J^P = 1^+, 2^-, 3^+...$ formed from *two* distinct ℓS combinations – dynamical coupling $\{{}^{3}S_{1}, {}^{3}D_{1}\}, \{{}^{3}P_{2}, {}^{3}F_{2}\}, \{{}^{3}D_{3}, {}^{3}G_{3}\},...$

Vector-Pseudoscalar Scattering	
•0	
0	
Finite Volume	

Results

Summary

Symmetry breaking

• Spatially cubic box, $L \times L \times L$, breaks SO(3)

Vector-Pseudoscalar	Scattering
000	
•0	
0	
Finite Volume	

Results

Summary

Symmetry breaking

- Spatially cubic box, $L \times L \times L$, breaks SO(3)
- For $\vec{P} = \vec{0}$, relevant symmetry group is O_h

Vector-Pseudoscalar	Scattering
000	
•0	
0	
Finite Volume	

Results

Summary

Symmetry breaking

- Spatially cubic box, $L \times L \times L$, breaks SO(3)
- For $\vec{P} = \vec{0}$, relevant symmetry group is O_h

• For $\vec{P} \neq \vec{0}$, relevant symmetry group is LG(\vec{P})

• Different helicity components of vectors subduce into different irreps of $LG(\vec{P} \neq \vec{0})$

Vector-Pseudoscalar Scattering O Finite Volume Spectrum Determination

Results 00 00 Summary

Partial-waves in a box at $\vec{P} = \vec{0}$, $\Lambda^P = T_1^+$

• Infinite tower of J^P collapse into finitely many Λ^P ...

<□> <@> < E> < E> E| = のQ@ 7/14

Vector-Pseudoscalar Scattering O Finite Volume Spectrum Determination

Results 00 00 Summary

Partial-waves in a box at $\vec{P} = \vec{0}$, $\Lambda^P = T_1^+$

- Infinite tower of J^P collapse into finitely many Λ^P ...
- States in T_1^+ tell us about 3S_1 , 3D_1 , 3D_3 , ... scattering amplitudes

Vector-Pseudoscalar Scattering	Spectrum Determination	Results	Sumi
000	0		
00		00	
•			
Quantisation Condition			

Bridging the infinite and finite volumes

$$\det \left[\mathbf{1} + i\rho(E_{\rm cm}) \mathbf{t}(E_{\rm cm}) \cdot \left(\mathbf{1} + i\overline{\mathcal{M}}(E_{\rm cm}, L) \right) \right] = 0$$

 Non-zero intrinsic spin and diagonal in lattice irrep - (see R. Briceño 1401.3312)

Vector-Pseudoscalar Scattering	Spectrum Determination	Results	Summai
000	0		
00		00	
•			
Quantisation Condition			

Bridging the infinite and finite volumes

$$\det \left[\mathbf{1} + i\rho(E_{\rm cm}) \mathbf{t}(E_{\rm cm}) \cdot \left(\mathbf{1} + i\overline{\mathcal{M}}(E_{\rm cm}, L) \right) \right] = 0$$

 Non-zero intrinsic spin and diagonal in lattice irrep - (see R. Briceño 1401.3312)

Infinite-volume scattering amplitudes Finite-volume spectra

< □ ▶ < @ ▶ < E ▶ < E ▶ El=
 < 3/14

Solutions are finite-volume energy levels

Vector-Pseudoscalar Scattering	Spectrum Determination	Results	Summa
000	0	00	
00		00	
•			
Quantisation Condition			

Bridging the infinite and finite volumes

$$\det \left[\mathbf{1} + i\rho(E_{\rm cm}) \mathbf{t}(E_{\rm cm}) \cdot \left(\mathbf{1} + i\overline{\mathcal{M}}(E_{\rm cm}, L) \right) \right] = 0$$

 Non-zero intrinsic spin and diagonal in lattice irrep - (see R. Briceño 1401.3312)

Infinite-volume scattering amplitudes Finite-volume spectra

Solutions are finite-volume energy levels

Parameterise **t**-matrix and match model spectra with finite-volume spectra

• Construct a large matrix of correlation functions – all operators resemble $\rho\pi$ in isospin-2, corresponding to **27** in SU(3)_F limit

$$C_{ij}(t) = ig\langle 0 ig| \mathcal{O}_i(t) \, \mathcal{O}_j^\dagger(0) ig| 0 ig
angle$$

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

• Construct a large matrix of correlation functions – all operators resemble $\rho\pi$ in isospin-2, corresponding to **27** in SU(3)_F limit

$$\mathcal{C}_{ij}(t) = ig\langle 0 ig| \mathcal{O}_i(t) \, \mathcal{O}_j^\dagger(0) ig| 0 ig
angle$$

• $\rho\pi$ operators – definite Λ and overall momentum \vec{P}

$$\rho\pi(\vec{P}) = \sum_{\hat{p}_1, \hat{p}_2} C(\vec{p}_1, \vec{p}_2; \vec{P}) \rho(\vec{p}_1) \pi(\vec{p}_2),$$

• Construct a large matrix of correlation functions – all operators resemble $\rho\pi$ in isospin-2, corresponding to **27** in SU(3)_F limit

$$\mathcal{C}_{ij}(t) = ig\langle 0 ig| \mathcal{O}_i(t) \, \mathcal{O}_j^\dagger(0) ig| 0 ig
angle$$

• $\rho\pi$ operators – definite Λ and overall momentum \vec{P}

$$\rho\pi(\vec{P}) = \sum_{\hat{\rho}_1, \hat{\rho}_2} C(\vec{p}_1, \vec{p}_2; \vec{P}) \rho(\vec{p}_1) \pi(\vec{p}_2),$$

· Variational analysis to disentangle and extract energies

• Construct a large matrix of correlation functions – all operators resemble $\rho\pi$ in isospin-2, corresponding to **27** in SU(3)_F limit

$$\mathcal{C}_{ij}(t) = ig\langle 0 ig| \mathcal{O}_i(t) \, \mathcal{O}_j^\dagger(0) ig| 0 ig
angle$$

• $\rho\pi$ operators – definite Λ and overall momentum \vec{P}

$$\rho\pi(\vec{P}) = \sum_{\hat{\rho}_1, \hat{\rho}_2} C(\vec{p}_1, \vec{p}_2; \vec{P}) \rho(\vec{p}_1) \pi(\vec{p}_2),$$

- Variational analysis to disentangle and extract energies
- Let's take T_1^+ as an example...

Spectrum Determination 0 Results

Summary

$\vec{P} = \vec{0}, \ T_1^+$ spectra

- If no interactions, spectra has many degeneracies virtue of vector subducing into multiple irreps at $\vec{P} \neq \vec{0}$
- Weak interactions, expect spectra near-degenerate

Spectrum Determination 0 Results

4 日 ト 4 日 ト 4 王 ト 4 王 ト 王 コ の へ 10/14

Summary

$\vec{P} = \vec{0}, \ T_1^+$ spectra

- If no interactions, spectra has many degeneracies virtue of vector subducing into multiple irreps at $\vec{P} \neq \vec{0}$
- Weak interactions, expect spectra near-degenerate
- All operators needed to robustly determine spectra

- If no interactions, spectra has many degeneracies virtue of vector subducing into multiple irreps at $\vec{P} \neq \vec{0}$
- Weak interactions, expect spectra near-degenerate
- All operators needed to robustly determine spectra

 $\begin{array}{c} [000] T_1^+ \\ \hline \rho_{[000]} \pi_{[000]} \\ \{2\} \rho_{[001]} \pi_{[00-1]} \\ \{3\} \rho_{[011]} \pi_{[0-1-1]} \\ \{2\} \rho_{[111]} \pi_{[-1-1-1]} \\ \hline 8 \text{ ops.} \end{array}$

Spectrum Determination o Results

Summary

 $\vec{P} \neq \vec{0}$ spectra

<ロト < 母ト < 目ト < 目ト のへの 11/14

Spectrum Determination o

Results

 $E_{\rm cm} - (m_\pi + m_o) / {\rm MeV}$

Dynamically coupled ${}^{3}S_{1}$ and ${}^{3}D_{1}$ partial-waves

- Stapp-parameterisation of S-matrix in ³S₁, ³D₁
- Over 140 energy levels as constraints
- Weakly repulsive in 3S_1
- ³D₁ consistent with zero

 hints of weak repulsion
- 200 $0.41 \quad a_t E_{\rm cm}$ 0.360.370.38 0.390.40 0 $\delta(^{3}D_{1})$ -10-20 $\delta(^{3}S_{1})$ -30 k 10 $\bar{\epsilon}({}^{3}S_{1}|{}^{3}D_{1})$ 5

< □ > < @ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \

• $\bar{\epsilon}$ significantly non-zero

Spectrum Determination o Results ○○ ○●

Summary

Phase-shifts for $\ell \leq 2$

- ${}^{3}P_{J}$ consistent with zero hints of weak attraction in ${}^{3}P_{2}$ and repulsion in ${}^{3}P_{0,1}$
- ³D_{2,3} consistent with zero – hints of weak repulsion

Vector-Pseudoscalar Scattering	Spectrum Determination	Results	Summary
000	0	00	
00		00	
0			

Summary

- A first calculation of $\rho\pi$ in isospin-2 from lattice QCD
- Vector-pseudoscalar scattering including effects of ${}^3S_1,\, {}^3P_{0,1,2},\, {}^3D_{1,2,3}\text{-waves}$
- Determination of the mixing angle between ${}^{3}S_{1}$, ${}^{3}D_{1}$ -waves

Vector-Pseudoscalar Scattering	Spectrum Determination	Results	Summary
000	0		
00		00	
0			

Summary

- A first calculation of $\rho\pi$ in isospin-2 from lattice QCD
- Vector-pseudoscalar scattering including effects of ${}^3S_1,\, {}^3P_{0,1,2},\, {}^3D_{1,2,3}\text{-waves}$
- Determination of the mixing angle between ${}^{3}S_{1}$, ${}^{3}D_{1}$ -waves
- Outlook
 - Many calculations of scattering amplitudes involving hadrons with non-zero intrinsic spin

Vector-Pseudoscalar Scattering	Spectrum Determination	Results	Summary
000	0		
00		00	
0			

Summary

- A first calculation of $\rho\pi$ in isospin-2 from lattice QCD
- Vector-pseudoscalar scattering including effects of ${}^3S_1,\, {}^3P_{0,1,2},\, {}^3D_{1,2,3}\text{-waves}$
- Determination of the mixing angle between ${}^{3}S_{1}$, ${}^{3}D_{1}$ -waves
- Outlook
 - Many calculations of scattering amplitudes involving hadrons with non-zero intrinsic spin

Thank you for listening!

Partial-waves subduction at $ec{P}=ec{0}$					
Λ^+	$ A_1^+ $	A_2^+	T_1^+	E^+	T_2^+
$J^+(^3\ell_J)$		$3^+ \begin{pmatrix} ^3D_3 \\ {}^3G_3 \end{pmatrix}$	$1^{+} \begin{pmatrix} {}^{3}S_{1} \\ {}^{3}D_{1} \end{pmatrix}$ $3^{+} \begin{pmatrix} {}^{3}D_{3} \\ {}^{3}G_{3} \end{pmatrix}$	2 ⁺ (³ D ₂)	$2^+ \begin{pmatrix} {}^3D_2 \end{pmatrix} \\ 3^+ \begin{pmatrix} {}^3D_3 \\ {}^3G_3 \end{pmatrix} \\ \dots$

<ロ > < 母 > < 臣 > < 臣 > 三日 つへで 1/6

Lattice Details

- Calculations were performed on anisotropic lattices of volumes $(L/a_s)^3 \times (T/a_t) = 20^3 \times 128$ and $24^3 \times 128$, where $a_s = 0.12$ fm and $\xi = a_s/a_t \sim 3.5$
- Gauge fields generated from a tree level Symanzik improved gauge action
- Clover fermion action with $N_f = 3$ degenerate flavours of dynamical quarks tuned to have masses approximately equal to the physical strange quark mass

S-, t- and K-matrices

- Stapp-parameterisation of S-matrix for coupled $^3S_1,\,^3D_1.$ Have ${\bf S}={\bf 1}+2i\rho{\bf t}$

$$\mathbf{S} = \begin{bmatrix} \cos(2\bar{\epsilon}) \exp[2i\,\delta_{3}\varsigma_{1}] & i\sin(2\bar{\epsilon}) \exp[i(\delta_{3}\varsigma_{1} + \delta_{3}D_{1})] \\ i\sin(2\bar{\epsilon}) \exp[i(\delta_{3}\varsigma_{1} + \delta_{3}D_{1})] & \cos(2\bar{\epsilon}) \exp[2i\,\delta_{3}D_{1}] \end{bmatrix},$$

• Express unitarity in terms of a real K-matrix

$$\left[t^{-1}(s)\right]_{\ell J, \ell' J} = \frac{1}{(2k_{\rm cm})^{\ell}} \left[K^{-1}(s)\right]_{\ell J, \ell' J} \frac{1}{(2k_{\rm cm})^{\ell'}} + \delta_{\ell \ell'} I(s)$$

• Form of the K-matrix for T_1^+ $\ell \leq 2$

$$\mathbf{K} = \begin{bmatrix} \mathcal{K}({}^{3}S_{1}|{}^{3}S_{1})(s) & \mathcal{K}({}^{3}S_{1}|{}^{3}D_{1})(s) & 0\\ \mathcal{K}({}^{3}S_{1}|{}^{3}D_{1})(s) & \mathcal{K}({}^{3}D_{1}|{}^{3}D_{1})(s) & 0\\ 0 & 0 & \mathcal{K}({}^{3}D_{3}|{}^{3}D_{3})(s) \end{bmatrix}$$

4/6

Determining the mixing angle

- $\bar{\epsilon}$ is most sensitive to the off-diagonal parameter in the K-matrix, $K({}^{3}S_{1}|{}^{3}D_{1})(s) = c_{0}({}^{3}S_{1}|{}^{3}D_{1})$
- The sign of $\bar{\epsilon}$ depends on sign of $c_0({}^3S_1|{}^3D_1)$
- Spectra in $\vec{P} \neq \vec{0}$ irreps sensitive to sign of $\bar{\epsilon}$
- Lattice spectra provide strong constraints on *ϵ* in energy region considered

イロト (母) (ヨト (ヨト ヨヨ) のくで