[Vector-Pseudoscalar Scattering](#page-2-0) [Spectrum Determination](#page-21-0) [Results](#page-25-0) [Summary](#page-31-0)
 $\begin{array}{ccc}\n\circ & \circ & \circ & \circ \\
\circ & \circ & \circ & \circ\n\end{array}$ \circ

 \circ

$\rho\pi$ isospin-2 scattering from lattice QCD

Antoni. J. Woss

(for the Hadron Spectrum Collaboration) University of Cambridge, Department of Applied Mathematics and Theoretical Physics

Multi-Hadron Systems from Lattice QCD, 2018 INT 18-70W

AJW is supported by the U.K. Science and Technology Facilities Council (STFC).

[Vector-Pseudoscalar Scattering](#page-2-0) [Spectrum Determination](#page-21-0) [Results](#page-25-0) [Summary](#page-31-0)
 $\begin{array}{ccc}\n\circ & \circ & \circ & \circ \\
\circ & \circ & \circ & \circ\n\end{array}$ \circ \circ

 \circ

Outline

[Vector-Pseudoscalar Scattering](#page-2-0)

[Infinite Volume](#page-2-0) [Finite Volume](#page-13-0) [Quantisation Condition](#page-18-0)

[Spectrum Determination](#page-21-0) [Spectrum Determination](#page-21-0)

[Results](#page-25-0)

[Spectra](#page-25-0) [Scattering Amplitudes](#page-29-0)

[Spectrum Determination](#page-21-0) [Results](#page-25-0) [Summary](#page-31-0)
 $\begin{array}{ccc}\n & & \text{Results} \\
\circ & & \text{Summary} \\
\end{array}$

ŏŏ

Scattering with non-zero intrinsic spin

• Many scattering processes feature hadrons with non-zero intrinsic spin

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ 할 날 → 9 Q @ - 3/14

Scattering with non-zero intrinsic spin

- • Many scattering processes feature hadrons with non-zero intrinsic spin
- NN scattering, e.g. ${}^{3}S_{1}$, ${}^{3}D_{1}$ mixing in deuteron

[Spectrum Determination](#page-21-0) [Results](#page-25-0) [Summary](#page-31-0)
 $\begin{array}{ccc}\n & \text{Results} \\
\circ & \text{Summary} \\
\end{array}$

 \circ

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ 할 날 → 9 Q @ - 3/14

Scattering with non-zero intrinsic spin

- Many scattering processes feature hadrons with non-zero intrinsic spin
- NN scattering, e.g. ${}^{3}S_{1}$, ${}^{3}D_{1}$ mixing in deuteron
- $a_1 \rightarrow \rho \pi$
- $b_1 \rightarrow \omega \pi$

Scattering with non-zero intrinsic spin

- • Many scattering processes feature hadrons with non-zero intrinsic spin
- NN scattering, e.g. ${}^{3}S_{1}$, ${}^{3}D_{1}$ mixing in deuteron
- $a_1 \rightarrow \rho \pi$
- $b_1 \rightarrow \omega \pi$
- Exotic X, Y, Z states observed decays into V-Ps and V-V channels

• As a testing ground, $\rho \pi$ in isospin-2

- As a testing ground, $\rho\pi$ in isospin-2
- Expect no bound-states or resonances exotic isospin

4 ロ → 4 @ → 4 할 → 4 할 → [할 → 9 Q O + 4/14]

- As a testing ground, $\rho\pi$ in isospin-2
- Expect no bound-states or resonances exotic isospin
- Calculations at $SU(3)_F$ point

4 ロ ▶ 4 @ ▶ 4 글 ▶ 4 글 ▶ [콜] = 19 0 0 1/14

- As a testing ground, $\rho\pi$ in isospin-2
- Expect no bound-states or resonances exotic isospin
- Calculations at $SU(3)_F$ point
- Heavy octet pseudoscalars, $m_{\pi} \sim 700$ MeV
- Stable octet vectors, $m_\rho \sim 1020$ MeV

[Spectrum Determination](#page-21-0) [Results](#page-25-0) [Summary](#page-31-0)
 $\begin{array}{ccc}\n & & \text{Results} \\
\circ & & \text{Summary} \\
\end{array}$

 \overline{O}

Features of vector-pseudoscalar scattering

 $\bullet \;$ Infinite-volume $J^P = \ell \otimes S$ i.e. $\ell \otimes S = |\ell - S| \oplus ... \oplus \ell + S$

Features of vector-pseudoscalar scattering

4 ロ ▶ (@) (홍) (홍) (홍) (홍) (9 0 - 5/14)

- $\bullet \;$ Infinite-volume $J^P = \ell \otimes S$ i.e. $\ell \otimes S = |\ell S| \oplus ... \oplus \ell + S$
- $S = 1$ and $\ell \ge 1$ triplets of partial-waves $J = \{\ell 1, \ell, \ell + 1\}$

Features of vector-pseudoscalar scattering

- $\bullet \;$ Infinite-volume $J^P = \ell \otimes S$ i.e. $\ell \otimes S = |\ell S| \oplus ... \oplus \ell + S$
- $S = 1$ and $\ell \geq 1$ triplets of partial-waves $J = \{\ell 1, \ell, \ell + 1\}$
- $J^P = 1^+, 2^-, 3^+...$ formed from two distinct ℓS combinations dynamical coupling $\{ {}^3S_1, {}^3D_1\}$, $\{ {}^3P_2, {}^3F_2\}$, $\{ {}^3D_3, {}^3G_3\}$,...

4 ロ ▶ (@) (홍) (홍) (홍) (홍) (9 0 - 5/14

[Spectrum Determination](#page-21-0) [Results](#page-25-0) [Summary](#page-31-0)
 $\begin{array}{ccc}\n & & \text{Results} \\
 & & \text{O0} \\
\end{array}$

Symmetry breaking

• Spatially cubic box, $L \times L \times L$, breaks SO(3)

[Spectrum Determination](#page-21-0) [Results](#page-25-0) [Summary](#page-31-0)
 $\begin{array}{ccc}\n & & \text{Results} \\
\circ & & \text{Summary} \\
\end{array}$

ŏŏ

Symmetry breaking

- Spatially cubic box, $L \times L \times L$, breaks SO(3)
- For $\vec{P} = \vec{0}$, relevant symmetry group is O_h

[Spectrum Determination](#page-21-0) [Results](#page-25-0) [Summary](#page-31-0)
 $\begin{array}{ccc}\n & & \text{Results} \\
\circ & & \text{Summary} \\
\end{array}$

 \circ

Symmetry breaking

- Spatially cubic box, $L \times L \times L$, breaks SO(3)
- For $\vec{P} = \vec{0}$, relevant symmetry group is O_h

• For $\vec{P} \neq \vec{0}$, relevant symmetry group is $LG(\vec{P})$

4 ロ ▶ (@) (홍) (홍) (홍) 동(월 1900 - 6/14 • Different helicity components of vectors subduce into different irreps of LG($\vec{P} \neq \vec{0}$)

[Vector-Pseudoscalar Scattering](#page-2-0) [Spectrum Determination](#page-21-0) [Results](#page-25-0) [Summary](#page-31-0) $\circ\bullet$ \circ [Finite Volume](#page-16-0)

 \circ

Partial-waves in a box at $\vec{P} = \vec{0}$, $\Lambda^P = T_1^+$ 1

• Infinite tower of J^P collapse into finitely many Λ^P ...

4 ロ → 4 @ → 4 할 → 4 할 → [할 → 9 Q O + 7/14]

[Vector-Pseudoscalar Scattering](#page-2-0) [Spectrum Determination](#page-21-0) [Results](#page-25-0) [Summary](#page-31-0) \circ [Finite Volume](#page-17-0)

 \circ

Partial-waves in a box at $\vec{P} = \vec{0}$, $\Lambda^P = T_1^+$ 1

- Infinite tower of J^P collapse into finitely many Λ^P ...
- States in T_1^+ tell us about 3S_1 , 3D_1 , 3D_3 , ... scattering amplitudes

Bridging the infinite and finite volumes

$$
\det \left[\mathbf{1} + i \rho(\mathit{E}_{\mathsf{cm}}) \, \mathbf{t}(\mathit{E}_{\mathsf{cm}}) \cdot \big(\mathbf{1} + i \overline{\boldsymbol{\mathcal{M}}}(\mathit{E}_{\mathsf{cm}}, L) \big) \right] = 0
$$

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ 할 날 → 9 Q @ - 8/14

• Non-zero intrinsic spin and diagonal in lattice irrep - (see R. Briceño 1401.3312)

Bridging the infinite and finite volumes

$$
\det \left[\mathbf{1} + i \rho (E_{\mathsf{cm}}) \, \mathbf{t} (E_{\mathsf{cm}}) \cdot \big(\mathbf{1} + i \overline{\boldsymbol{\mathcal{M}}} (E_{\mathsf{cm}} , L) \big) \right] = 0
$$

• Non-zero intrinsic spin and diagonal in lattice irrep - (see R. Briceño 1401.3312)

Infinite-volume scattering $\overline{}$ Finite-volume spectra
amplitudes

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ 할 날 → 9 Q 0 - 8/14

Solutions are finite-volume energy levels

Bridging the infinite and finite volumes

$$
\det \left[\mathbf{1} + i \rho (E_{\mathsf{cm}}) \, \mathbf{t} (E_{\mathsf{cm}}) \cdot \big(\mathbf{1} + i \overline{\boldsymbol{\mathcal{M}}} (E_{\mathsf{cm}} , L) \big) \right] = 0
$$

Non-zero intrinsic spin and diagonal in lattice irrep - (see R. Briceño 1401.3312)

Infinite-volume scattering volume seattering ← Finite-volume spectra

Solutions are finite-volume energy levels

Parameterise **t**-matrix and match model spectra with finite-volume spectra

8/14 Need to calculate finite-volume spectra[.](#page-19-0)..

•

• Construct a large matrix of correlation functions – all operators resemble $\rho\pi$ in isospin-2, corresponding to 27 in SU(3)_F limit

$$
C_{ij}(t) = \langle 0 | \mathcal{O}_i(t) \, \mathcal{O}_j^{\dagger}(0) | 0 \rangle
$$

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ 할 날 → 9 Q @ 9/14

• Construct a large matrix of correlation functions – all operators resemble $\rho\pi$ in isospin-2, corresponding to 27 in SU(3)_F limit

$$
C_{ij}(t) = \langle 0 | \mathcal{O}_i(t) \, \mathcal{O}_j^{\dagger}(0) | 0 \rangle
$$

• $\rho\pi$ operators – definite Λ and overall momentum \vec{P}

$$
\rho\pi(\vec{P})=\sum_{\hat{p}_1,\hat{p}_2}\mathcal{C}(\vec{p}_1,\vec{p}_2;\vec{P})\rho(\vec{p}_1)\pi(\vec{p}_2),
$$

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ 할 날 → 9 Q @ 9/14

• Construct a large matrix of correlation functions – all operators resemble $\rho\pi$ in isospin-2, corresponding to 27 in SU(3)_F limit

$$
C_{ij}(t) = \langle 0 | \mathcal{O}_i(t) \, \mathcal{O}_j^{\dagger}(0) | 0 \rangle
$$

• $\rho\pi$ operators – definite Λ and overall momentum \overrightarrow{P}

$$
\rho\pi(\vec{P})=\sum_{\tilde{\rho}_1,\hat{\rho}_2}\mathcal{C}(\vec{\rho}_1,\vec{\rho}_2;\vec{P})\rho(\vec{\rho}_1)\pi(\vec{\rho}_2),
$$

• Variational analysis to disentangle and extract energies

• Construct a large matrix of correlation functions – all operators resemble $\rho\pi$ in isospin-2, corresponding to 27 in SU(3)_F limit

$$
C_{ij}(t) = \langle 0 | \mathcal{O}_i(t) \, \mathcal{O}_j^{\dagger}(0) | 0 \rangle
$$

• $\rho\pi$ operators – definite Λ and overall momentum \overrightarrow{P}

$$
\rho\pi(\vec{P})=\sum_{\vec{\rho}_1,\vec{\rho}_2}\mathcal{C}(\vec{\rho}_1,\vec{\rho}_2;\vec{P})\rho(\vec{\rho}_1)\pi(\vec{\rho}_2),
$$

- Variational analysis to disentangle and extract energies
- Let's take \mathcal{T}_1^+ as an example...

[Spectrum Determination](#page-21-0) **[Results](#page-25-0)** [Summary](#page-31-0) Summary Summary

 \circ

10 → 1日 → 1월 → 1월 → 월 → 990 10/14

$\vec{P} = \vec{0}, T_1^+$ j_1^+ spectra

- If no interactions, spectra has many degeneracies – virtue of vector subducing into multiple irreps at $\vec{P} \neq \vec{0}$
- Weak interactions, expect spectra near-degenerate

[Spectrum Determination](#page-21-0) **[Results](#page-25-0)** [Summary](#page-31-0) Summary

 \circ

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ 로 로 → 9 Q ① - 10/14

$\vec{P} = \vec{0}, T_1^+$ j_1^+ spectra

- If no interactions, spectra has many degeneracies – virtue of vector subducing into multiple irreps at $\vec{P}\neq \vec{0}$
- Weak interactions, expect spectra near-degenerate
- All operators needed to robustly determine spectra

 $[000]\,T_1^+$ $ρ$ [000] $π$ [000] $\{2\}$ $\rho_{[001]}\pi_{[00-1]}$ $\{3\}$ $\rho_{[011]}\pi_{[0-1-1]}$ $\{2\}$ $\rho_{[111]}\pi_{[-1-1-1]}$ 8 ops.

- If no interactions, spectra has many degeneracies – virtue of vector subducing into multiple irreps at $\vec{P} \neq \vec{0}$
- Weak interactions, expect spectra near-degenerate
- All operators needed to robustly determine spectra

 $[000]\,T_1^+$ ρ [000] π [000] $\{2\}$ $\rho_{[001]}\pi_{[00-1]}$ $\{3\}$ $\rho_{[011]}\pi_{[0-1-1]}$ ${2} \rho_{[111]} \pi_{[-1-1-1]}$ 8 ops.

[Vector-Pseudoscalar Scattering](#page-2-0) [Spectrum Determination](#page-21-0) [Results](#page-25-0) [Summary](#page-31-0)

 $\vec{P} \neq \vec{0}$ spectra

11/14

[Vector-Pseudoscalar Scattering](#page-2-0) [Spectrum Determination](#page-21-0) [Results](#page-25-0) [Summary](#page-31-0)
 $\begin{array}{ccc}\n\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet\n\end{array}$ $\overline{O} \overline{O}$ [Scattering Amplitudes](#page-29-0)

 \bullet

Dynamically coupled ${}^{3}S_{1}$ and ${}^{3}D_{1}$ partial-waves

- Stapp-parameterisation of **S**-matrix in 3S_1 , 3D_1
- Over 140 energy levels as constraints
- Weakly repulsive in ${}^{3}S_{1}$
- \bullet 3D_1 consistent with zero – hints of weak repulsion
- $E_{cm} (m_{\pi} + m_{o})$ / MeV 50 100 150 200 250 0.36 0.37 0.38 0.40 0.41 $a_t E_{cm}$ 0.39 $\delta(^3D_1)$ -10 $-20\,$ δ ⁽³S₁)</sub> -30 $10¹$ $\overline{5}$

(ロ) (御) (唐) (唐) 唐)= 990 12/14

• $\bar{\epsilon}$ significantly non-zero

[Vector-Pseudoscalar Scattering](#page-2-0) [Spectrum Determination](#page-21-0) [Results](#page-25-0) [Summary](#page-31-0) [Scattering Amplitudes](#page-30-0)

Phase-shifts for $\ell < 2$

- \bullet ${}^{3}P_{J}$ consistent with zero hints of weak attraction in $3P_2$ and repulsion in $3P_{0,1}$
- \bullet $^3D_{2,3}$ consistent with zero – hints of weak repulsion

Summary

14 0 0 14/14 + 4 2 × 4 2 × 3 2 × 4

- A first calculation of $\rho\pi$ in isospin-2 from lattice QCD
- Vector-pseudoscalar scattering including effects of ${}^{3}S_{1}$, ${}^{3}P_{0,1,2}$, ${}^{3}D_{1,2,3}$ -waves
- Determination of the mixing angle between ${}^{3}S_{1}$, ${}^{3}D_{1}$ -waves

Summary

- A first calculation of $\rho\pi$ in isospin-2 from lattice QCD
- Vector-pseudoscalar scattering including effects of ${}^{3}S_{1}$, ${}^{3}P_{0,1,2}$, ${}^3D_{1,2,3}$ -waves
- Determination of the mixing angle between ${}^{3}S_{1}$, ${}^{3}D_{1}$ -waves
- Outlook
	- Many calculations of scattering amplitudes involving hadrons with non-zero intrinsic spin

4 ロ ▶ 4 @ ▶ 4 블 ▶ 4 블 ▶ - 콜| 게 9 Q ① - 14/14

Summary

- A first calculation of $\rho\pi$ in isospin-2 from lattice QCD
- Vector-pseudoscalar scattering including effects of ${}^{3}S_{1}$, ${}^{3}P_{0,1,2}$, $3D_{1,2,3}$ -waves
- Determination of the mixing angle between ${}^{3}S_{1}$, ${}^{3}D_{1}$ -waves
- Outlook
	- Many calculations of scattering amplitudes involving hadrons with non-zero intrinsic spin

Thank you for listening!

 $\begin{picture}(160,10) \put(0,0){\line(1,0){10}} \put(0$

Lattice Details

- Calculations were performed on anisotropic lattices of volumes $(L/a_s)^3\times (T/a_t)=20^3\times 128$ and $24^3\times 128$, where $a_s=0.12$ fm and $\xi = a_s/a_t \sim 3.5$
- Gauge fields generated from a tree level Symanzik improved gauge action
- Clover fermion action with $N_f = 3$ degenerate flavours of dynamical quarks tuned to have masses approximately equal to the physical strange quark mass

S-, t- and K-matrices

• Stapp-parameterisation of S-matrix for coupled ${}^3S_1, {}^3D_1.$ Have $S = 1 + 2i\rho t$

$$
\textsf{S}=\begin{bmatrix} \cos(2\bar{\epsilon})\exp[2i\,\delta_{^3\mathsf{S}_1}] & i\sin(2\bar{\epsilon})\exp[i(\delta_{^3\mathsf{S}_1}+\delta_{^3D_1})] \\ i\sin(2\bar{\epsilon})\exp[i(\delta_{^3\mathsf{S}_1}+\delta_{^3D_1})] & \cos(2\bar{\epsilon})\exp[2i\,\delta_{^3D_1}] \end{bmatrix},
$$

• Express unitarity in terms of a real **K**-matrix

$$
[t^{-1}(s)]_{\ell J, \ell' J} = \frac{1}{(2k_{cm})^{\ell}} [K^{-1}(s)]_{\ell J, \ell' J} \frac{1}{(2k_{cm})^{\ell'}} + \delta_{\ell \ell'} I(s)
$$

• Form of the **K**-matrix for T_1^+ $\ell \le 2$

$$
\mathbf{K} = \begin{bmatrix} K(^{3}S_{1}|^{3}S_{1})(s) & K(^{3}S_{1}|^{3}D_{1})(s) & 0 \\ K(^{3}S_{1}|^{3}D_{1})(s) & K(^{3}D_{1}|^{3}D_{1})(s) & 0 \\ 0 & 0 & K(^{3}D_{3}|^{3}D_{3})(s) \end{bmatrix}
$$

(ロ) (@) (홍) (홍) 홍)= 990 - 5/6

Determining the mixing angle

- $\bar{\epsilon}$ is most sensitive to the off-diagonal parameter in the K-matrix, $K(^3S_1|{}^3D_1)(s) = c_0({}^3S_1|{}^3D_1)$
- The sign of $\bar{\epsilon}$ depends on sign of $c_0(^3S_1|{}^3D_1)$
- Spectra in $\vec{P} \neq \vec{0}$ irreps sensitive to sign of $\bar{\epsilon}$
- Lattice spectra provide strong constraints on $\bar{\epsilon}$ in energy region considered

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 Y Q @

6/6