# **Review of coupled-channel scattering results**

**David Wilson** 

based on work with the Hadron Spectrum Collaboration



Multi-hadron systems from Lattice QCD February 5-9 2018 INT Seattle



Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin





Overview of Hadron Spectrum Collaboration (HadSpec) scattering calculations:

 $m_{\pi} = 700 \text{ MeV}$  $m_{\pi} = 391 \text{ MeV}$  $m_{\pi} = 236 \text{ MeV}$  $I=2 \rho \pi$  in S, P, D I=0, ½, 1, 2 with π, K, η, η'  $I=1 \pi \pi$  in P, F partial waves in S, P, D partial waves partial waves I=1/2 with  $D\pi$ ,  $D\eta$ ,  $D_sK$  $I=0 \pi\pi$  in S wave See next talk: Antoni Woss  $I=1 \pi \chi \rightarrow \pi \pi$ • L = 16, 20, 24 • L=32 • 9 publications • 2 publications • rigorous extractions of S & P • rigorous extractions of the wave 2-body resonances ~  $\rho \& \sigma$  resonances • kinematics make it difficult up to 3 or 4 body thresholds • D-wave resonances, typically to go higher in energy (3+ neglecting (small) 3-body body channels open) effects

> N<sub>f</sub>=2+1, approximately physical strange quark mass, anisotropic lattices ~3.5x finer in temporal direction, a<sub>spatial</sub>~0.12 fm



Considering *u*,*d*,*s* quarks:  $q\bar{q}(^{2S+1}L_J)$ 



#### How do we understand the scalars?

 $\delta_1$ 

15

12











# In the scalar sector, amplitudes grow rapidly from threshold:





3 volumes L=16, 20, 24 anisotropic (3.5 finer spacing in time) Wilson-Clover

 $m_{\pi}$ =391MeV

 $m_K = 549 MeV$ 

operators used:

 $\bar{\psi} \Gamma \overleftrightarrow{D} \ldots \overleftrightarrow{D} \psi\,$  local qq-like constructions

$$\sum_{\vec{p_1} + \vec{p_2} \in \vec{p}} C(\vec{p_1}, \vec{p_2}; \vec{p}) \Omega_{\pi}(\vec{p_1}) \ \Omega_{\pi}(\vec{p_2})$$

two-hadron constructions

 $\Omega_{\pi}^{\dagger} = \sum_{i} v_{i} \mathcal{O}_{i}^{\dagger}$ 

uses the eigenvector from the variational method performed in e.g. pion quantum numbers

using *distillation* (Peardon *et al* 2009) many wick contractions, eg just pi-pi & qq operators:



 $\begin{bmatrix} \pi\pi \to \pi\pi & \pi\pi \to K\bar{K} & \pi\pi \to \eta\eta \\ & K\bar{K} \to K\bar{K} & K\bar{K} \to \eta\eta \\ & & \eta\eta \to \eta\eta \end{bmatrix}$ 

Briceno et al, arXiv:1708.06667



similar types of operators as before: local q<del>q</del> & 2-hadron conservatively 57 energy levels dominated by S-wave interactions

11/33



conservatively 34 energy levels dominated by D-wave interactions

### Spectra and overlaps

David Wilson (TCD)



operator overlaps give some intuition lots of mixing in the scalar sector

- essential to have meson-meson ops even below threshold
- can't always 'read-off' resonance content

recent review by Briceno, Dudek, Young: arXiv:1706.06223 Direct extension of the elastic quantization condition

$$\det \left[ \mathbf{1} + i\boldsymbol{\rho}(E) \cdot \boldsymbol{t}(E) \cdot \left( \mathbf{1} + i\boldsymbol{\mathcal{M}}(E,L) \right) \right] = 0$$

$$\int_{\text{phase space}} \inf \left[ \inf \left[ \operatorname{t-matrix}_{t-matrix} \left( \operatorname{t-matrix}_{t-matrix}$$

Elastic scattering: Lüscher 1986,1991 Generalised to moving frames: Gottlieb, Rummukainen 1995 Unequal masses: Prelovsek, Leskovec 2012

Many derivations of the coupled-channel extension, **all in agreement**: He, Feng, Liu 2005 - two channel QM, strong coupling Hansen & Sharpe 2012 - field theory, multiple two-body channels Briceño & Davoudi 2012 - strongly-coupled Bethe-Salpeter amplitudes Guo et al 2012 - Hamiltonian & Lippmann-Schwinger

Also derivations in specific channels, or for a specific parameterization of the interactions like NREFT, chiral PT, Finite Volume Hamiltonian, etc.

Briceño 2014 - Generalised to scattering of particles with non-zero spin, and spin-1/2.

For progress on a general 3-body quantization condition - see other talks



we can identify the zeros



 $\mathbf{t} = \begin{pmatrix} \pi\pi \to \pi\pi & \pi\pi \to KK \\ K\bar{K} \to \pi\pi & K\bar{K} \to K\bar{K} \end{pmatrix}$ 

$$\det \left[\mathbf{1} + i\boldsymbol{\rho}(E) \cdot \boldsymbol{t}(E) \cdot (\mathbf{1} + i\boldsymbol{\mathcal{M}}(E,L))\right] = 0$$

determinant condition:

- several unknowns at each value of energy
- energy levels typically do not coincide
- underconstrained problem for a single energy

one solution: use energy dependent parameterizations

- Constrained problem when #(energy levels) > #(parameters)
- Essential amplitudes respect unitarity of the S-matrix

$$\mathbf{S}^{\dagger}\mathbf{S} = \mathbf{1} \quad \rightarrow \quad \operatorname{Im} \mathbf{t}^{-1} = -\boldsymbol{\rho} \qquad \rho_{ij} = \delta_{ij} \frac{2k_i}{E_{\mathsf{cm}}}$$

K-matrix approach:

$$\mathbf{t}^{-1} = \mathbf{K}^{-1} - i\boldsymbol{\rho}$$

Chew-Mandelstam phase space:

 $\mathbf{t}^{-1} = \mathbf{K}^{-1} + \boldsymbol{I}$ 

use a dispersion relation to generate a real part from ip

- any form real for real energies is valid
- we use a broad selection of K-matrices
- neglects left-hand cut

16/33

An example S-wave spectrum fit

 $det \left[\mathbf{1} + i\boldsymbol{\rho}(E) \cdot \boldsymbol{t}(E) \cdot (\mathbf{1} + i\boldsymbol{\mathcal{M}}(E,L))\right] = 0$ 



 $\chi^2/N_{\rm dof} = \frac{44.0}{57-8} = 0.90$ 



 $\mathbf{t}^{-1} = \mathbf{K}^{-1} + \mathbf{I}$ 

An example S-wave spectrum fit

$$\mathbf{K}^{-1}(s) = \begin{pmatrix} a+bs & c+ds & e\\ c+ds & f & g\\ e & g & h \end{pmatrix}$$

$$\chi^2 / N_{\rm dof} = \frac{44.0}{57 - 8} = 0.90$$

57 energy levels

$$S_{ii}(E_{\rm cm}) = \left|S_{ii}(E_{\rm cm})\right| e^{2i\phi_{ii}(E_{\rm cm})}$$



19/33



#### An example D-wave spectrum fit



 $\chi^2/N_{\rm dof} = \frac{28.9}{34-9} = 1.15$ 

#### The amplitudes





Multi-sheeted complex plane due to square-root branch cuts at each threshold, in single channel case for now:



**Bound state** 

Resonance

Virtual Bound state

 $\mathbf{t}_{ij}(\mathbf{s} \sim \mathbf{s}_0) \sim \frac{\mathbf{c}_i \mathbf{c}_j}{\mathbf{s}_0 - \mathbf{s}}$ 

for n-channels, there are 2<sup>n</sup> sheets

$$\mathbf{k}_{\mathrm{cm}}=\pm\frac{1}{2}\left(\mathbf{E}_{\mathrm{cm}}^{2}-4\mathbf{m}^{2}\right)^{\frac{1}{2}}$$





## **Bound state**

Resonances

**Virtual Bound state** 

for n-channels, there are 2<sup>n</sup> sheets

$$\mathbf{k}_{\mathrm{cm}} = \pm \frac{1}{2} \left( \mathsf{E}_{\mathrm{cm}}^2 - 4 \mathfrak{m}^2 \right)^{\frac{1}{2}}$$





label sheets by signs of Im(k)

many distributions of pole positions possible

in some cases they can tell us about the composition the state

# **Bound state Resonances**

**Virtual Bound state** 



#### Near a t-matrix pole

$$t_{ij} \sim \frac{c_i c_j}{s_0 - s}$$





**Tensor resonance poles** 







 $\begin{array}{ll} f_2^{\sf a}: & \sqrt{s_0} = 1470(15) - \frac{i}{2} \, 160(18) \; {\rm MeV} \\ {\rm Br}(f_2^{\sf a} \to \pi\pi) \sim 85\%, & {\rm Br}(f_2^{\sf a} \to K\overline{K}) \sim 12\% \end{array}$ 

 $f_2^{b}: \quad \sqrt{s_0} = 1602(10) - \frac{i}{2} \, 54(14) \text{ MeV}$ Br $(f_2^{b} \to \pi\pi) \sim 8\%, \quad \text{Br}(f_2^{b} \to K\overline{K}) \sim 92\%$  Just for fun...



 $\begin{array}{ll} f_2^{\sf a}: & \sqrt{s_0} = 1470(15) - \frac{i}{2} \, 160(18) \; {\rm MeV} \\ {\rm Br}(f_2^{\sf a} \to \pi\pi) \sim 85\%, & {\rm Br}(f_2^{\sf a} \to K\overline{K}) \sim 12\% \end{array}$ 

 $f_2^{b}: \quad \sqrt{s_0} = 1602(10) - \frac{i}{2} \, 54(14) \text{ MeV}$ Br $(f_2^{b} \to \pi\pi) \sim 8\%, \quad \text{Br}(f_2^{b} \to K\overline{K}) \sim 92\%$ 





## **Summary**

Scattering amplitudes of pairs of pseudoscalar hadrons can be computed from lattice QCD

Several channels with scalar, vector and tensor resonances have been computed

Control of 3+ body effects needed for

- lighter pion masses
- higher mass resonances

For progress on scattering of particles with spin, see the next talk by Antoni Woss



Many thanks to my collaborators:

**Raul Briceño**, Bipasha Chakraborty, **Jozef Dudek, Robert Edwards**, Balint, Joo, David Richards (Jefferson Lab & around)

Mike Peardon, Sinéad Ryan, Cian O'Hara, David Tims (Trinity College Dublin)

**Christopher Thomas, Graham Moir**, Gavin Cheung, **Antoni Woss** (University of Cambridge)

Nilmani Mathur (Tata Institute)

(**Bold** - authors of one or more of the papers mentioned)