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Nuclei with A<5
QCD with unphysical  
quark masses      
mπ~800 MeV, mN~1,600 MeV

mπ~450 MeV, mN~1,200 MeV

 Unphysical nuclei
Proton-proton fusion  
and tritium β-decay  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Double β-decay      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Gluon structure  
of light nuclei       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Scalar, axial  
and tensor MEs       
[arXiv:1712.03221] 

Nuclear structure: magnetic 
moments, polarisabilities
[PRL 113,  252001 (2014), PRD 92, 114502 (2015)]

First nuclear reaction: np→dγ 
[PRL 115, 132001 (2015)] 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‘Exotic’ Glue in the Nucleus

‘Exotic’ Glue
Contributions to gluon

observables that are not from

nucleon degrees of freedom.

Exotic glue operator:

operator in nucleon = 0

operator in nucleus 6= 0
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Will’s talk:    fixed magnetic field         moments, polarisabilities 
Axial MEs:    fixed axial background field         axial charges, other matrix elts.

Construct correlation functions from propagators modified in axial field

Axial background field

[NPLQCD Nucl. Phys. A743,  170 (2004)]

S(q)
� (x, y) = S(q)(x, y) + �q

Z
dz S(q)(x, z) �3�5 S

(q)(z, y)

constantcompound propagator

S(d)
�

time

C�u;�d(t) =

S(u)
�

Linear response                axial matrix element



Axial background field

S(d)
�

time

C�u;�d(t) =

S(u)
�

C�u;�d(t) = + +� �2

+ �3
Linear response 
gives axial matrix  
element

Implicit sum over 
current insertion 
times



Example: determination of the proton axial charge 
 
 
 

Time difference isolates matrix element part

Axial background field

(C�u;�d(t+ 1)� C�u;�d(t))

����
O(�)

= Z0e
�Mpthp|A(u)

3 (0)|pi+O(e��t)

C�u;�d(t)

����
O(�)

=
tX

⌧=0

h0|�†(t)J(⌧)�(0)|0i

= . . .

= Z0e
�Mpt

h
C + t hp|A(u)

3 (0)|pi+O(e��t)
i

Excited states

Irrelevant constants

Matrix element

Implicit sum over 
current insertion 
times

C�u;�d(t)

����
O(�)

=



Extract matrix element through linear response of correlators to the  
background field
Form ratios to cancel leading  
time-dependence 
 
 
 
 
 
At late times: 

Matrix element revealed  
through “effective matrix elt. plot”

Rp(t) =

⇣
C(p)

�u;�d=0(t)� C(p)
�u=0;�d

(t)
⌘���

O(�)

C(p)
�u=0;�d=0(t)

Rp(t+ 1)�Rp(t)
t!1�! gA

ZA

Proton axial charge
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Simplest semileptonic weak  
decay of a nuclear system  
 

Gamow-Teller (axial current)  
contribution to decays of nuclei  
not well-known from theory
Understand multi-body contributions  
to                 better predictions for  
decay rates of larger nuclei

Kumar et al. J. Phys. G43 (2016)

(free-nucleon)

different nuclei 
30<A<60

Tritium β-decay

    Calculate
gAhGTi = h3He|q�k�5⌧�q|3Hi

hGTi



Form ratios of compound 
correlators to cancel leading  
time-dependence: 
 

Ground state ME revealed 
through “effective ME plot”

Tritium β-decay

hG
T
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FIG. 1. The ratios of correlation functions that determine
the unrenormalized isovector axial charge of the proton. The
orange diamonds (blue circles) correspond to the SS (SP) cor-
relator ratios, Rp(t), as defined in Eq. (4), and the band cor-
responds to a constant fit to the plateau interval of both SS
and SP.

as the proton has two valence up quarks and one va-
lence down quark. Consequently, using at least one(two)
nonzero value(s) of �d(u) enables extraction of the linear
response using simple fits or, in the more general cases
below, by inverting the Vandermonde matrix. The dif-
ference of the up-quark and down-quark matrix elements
can be used to construct the desired three-point function
containing the isovector axial current. This can then be
combined with the zero-field two-point function to form
a ratio that asymptotes to the desired axial charge at late
times, namely

Rp(t) =

⇣
C(p)

�u;�d=0
(t)� C(p)

�u=0;�d
(t)

⌘���
O(�)

C(p)

�u=0;�d=0
(t)

, (3)

where the ratios are averaged over both spins, and
“
��
O(�)

” extracts the coe�cient of � in the preceding ex-

pression. Then,

Rp(t) ⌘ Rp(t+ 1)�Rp(t) �!
gA
ZA

. (4)

The e↵ective-gA plots resulting from the correlator di↵er-
ences are shown in Fig. 1, along with constant fits that
extract gA from the late-time asymptote. The extracted
value is gA/ZA = 1.298(2)(6). Including the renormal-
ization factor, this result yields an axial-current matrix
element of gA = 1.13(2)(7), which is consistent with pre-
vious determinations from standard three-point function
techniques at this pion mass [46, 47].

The GT Matrix Element for Tritium �-decay: The
half-life of tritium, t1/2, is related to the F and GT matrix
elements by [1]

(1 + �R)fV
K/G2

V

t1/2 =
1

hFi2 + fA/fV g2
A
hGTi2

, (5)

FIG. 2. The ratios of correlation functions that determine
the unrenormalized isovector axial matrix element in 3H (up-
per panel), and the ratio of the isovector axial matrix ele-
ment in 3H to that in the proton (lower panel). The orange
diamonds (blue circles) correspond to the SS (SP) e↵ective
correlator ratios and the bands correspond to constant fits to
the asymptotic behavior.

where the factors on the left-hand side are known pre-
cisely from theory or experiment. On the right-hand
side, fA,V denote Fermi functions [48] and hFi and
hGTi are the F and GT reduced matrix elements, re-
spectively. hFi is constrained to be very close to unity
by the Ademollo-Gatto theorem [49], modified only by
second-order isospin-breaking and electromagnetic cor-
rections. However, gAhGTi = h

3He|q�k�5⌧�q|3Hi is less
constrained, and its evaluation is the focus of this section.
By isospin symmetry, the GT matrix element for

3H!3He e�⌫ is related to the axial charge of the tri-
ton, gA(3H), when the light quarks are degenerate and
in the absence of electromagnetism. Analogous to Rp

above, the ratio R3H(t) of correlation functions is con-
structed in background fields such that R3H(t) ! gA(3H)
in the large-time limit. The analysis of these correlation
functions is more complex than for the proton because
the triton has four up quarks and five down quarks and
the correlators are thus quartic and quintic polynomi-
als in �u,d, respectively. Acting with the inverse of the
Vandermonde matrix on the calculated correlation func-
tions is su�cient to extract the terms linear in �u,d and
gives results consistent with a polynomial fit. Results for
R3H(t) are shown in Fig. 2 along with a constant fit to
the asymptotic value gA(3H)/ZA. Also shown in Fig. 2
is hGTi(t) = R3H(t)/Rp(t), which is independent of ZA,
and the fit to its asymptotic value, gA(3H)/gA. Analyses
of these ratios lead to

gA(3H)

ZA

= 1.272(6)(17),
gA(3H)

gA
= 0.979(3)(10), (6)

where the first uncertainties are statistical and the sec-
ond arise from systematics of the fits in both the field
strength and temporal separation as well as di↵erences in

half-life
axial MEvector ME

known from theory or expt.



Stars emit heat/light from conversion of 
H to He

Sun + cooler stars: proton-proton fusion 
chain reaction  
 
 
 

Related to:
Neutrino breakup reaction (SNO)
Muon capture reaction (MuSun)

Proton-proton fusion

    We calculate  

        cross-section pp ! de+⌫

hd; 3|A3
3|ppi

) L1,A, `1,A, L1,A, . . .



Form ratios of compound correlators to cancel leading  
time-dependence 
 
 
 
 

Fit a constant to the  
‘effective matrix element  
plot’ at late times

Proton-proton fusion
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ZA

=
hd; 3|A3

3|ppi
ZA
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of these ratios lead to

gA(3H)

ZA

= 1.272(6)(22),
gA(3H)

gA
= 0.979(3)(10), (6)

where the first uncertainties are statistical and the second
arise from systematics as described for gA. The result for
gA(3H)/gA is quite close to the precise, experimentally-
determined value of hGTi = 0.9511(13) [6] at the phys-
ical quark masses. In the context of ⇡/EFT, the short-
distance two-nucleon axial-vector operator, with coe�-
cient L1,A [4], is expected to give the leading contribution
to the di↵erence of this ratio from unity.

The Low-Energy Proton-Proton Fusion Cross Section:
The low-energy cross section for pp ! de+⌫ is dictated
by the matrix element

��⌦d; j
��A�

k

�� pp
↵�� ⌘ gAC⌘

r
32⇡

�3
⇤(p) �jk, (7)

where Aa

k
(x) is the axial current with isospin and spin

components a and k respectively, j is the deuteron spin
index, C⌘ is the Sommerfeld factor and � is the deuteron
binding momentum. The quantity ⇤(p) has been calcu-
lated at threshold in ⇡/EFT to N2LO [3] and N4LO [4]
and later with a dibaryon approach [10]. With the ap-
proach of Ref. [4], resumming all of the e↵ective range
contributions [10, 56, 57], ⇤(0) at N2LO is related to the
renormalization-scale independent short-distance quan-
tity Lsd�2b

1,A
that is a solely two-body contribution, along

with scattering parameters and Coulomb corrections:

⇤(0) =
1

p
1� �⇢

{e� � �app[1� �e��(0,�)] +

1

2
�2app

p
r1⇢}�

1

2gA
�app

p
1� �⇢ Lsd�2b

1,A
. (8)

Here � = ↵Mp/�, where ↵ is the QED fine-structure
constant and Mp is the mass of the proton. The pp scat-
tering length is app, r1 and ⇢ are the e↵ective ranges in
the 1S0 and 3S1 channels, respectively, and �(0,�) is the
incomplete gamma function. A determination of Lsd�2b

1,A
,

or equivalently of the ⇡/EFT coupling L1,A which is de-
termined from the scale-independent constant

L1,A =
1

2gA

1� �⇢

�
Lsd�2b

1,A
�

1

2

p
r1⇢ (9)

(as shown explicitly in Ref. [4]), is a goal of the present
LQCD calculations.

A background isovector axial-vector field mixes the
Jz = Iz = 0 components of the 3S1 and 1S0 two-
nucleon channels, enabling the pp-fusion matrix element
to be accessed. Using the new background field construc-

tion, the relevant o↵-diagonal matrix element C(
3
S1,

1
S0)

�u;�d
(t)

is a cubic polynomial in both �u and �d. In Ref. [39],
the analogous mixing between the two-nucleon channels
induced by an isovector magnetic field was treated by di-
agonalizing a (channel-space) matrix of correlators and

determining the splittings between energy eigenvalues.
This provided access to the matrix element dictating
np ! d� at low energies, as was proposed in Ref. [58].
Such a method can also be used for the axial field, but
the improved approach implemented here makes use of
the finite-order polynomial structure to access the matrix
element directly. For a background field that couples to
the u quarks,

C(
3
S1,

1
S0)

�u;�d=0
(t) = �u

tX

⌧=0

X

x,y

h0|�3
3S1

(x, t)Au

3
(y, ⌧)�†

1S0
(0)|0i

+ c2�
2

u
+ c3�

3

u
, (10)

where �3
3S1

(�1S0
) is an interpolating field for the Jz = 0

(Iz = 0) component of the 3S1 (1S0) channel, Au

3
=

u�3�5u, and c2,3 are irrelevant terms. Calculations of
the axial matrix element at three or more values of �u

allow for the extraction of the term that is linear in �u.
A similar procedure yields the term that is linear in �d

from background fields coupling to the d quark. Taking
the di↵erence of the ratios of these terms to the corre-
sponding zero-field two-point functions determines the
transition matrix element in the finite lattice volume;

R3S1,
1S0

(t) =
C(

3
S1,

1
S0)

�u,�d=0
(t)

���
O(�u)

� C(
3
S1,

1
S0)

�u=0,�d
(t)

���
O(�d)q

C(3S1,
3S1)

�u=0,�d=0
(t)C(1S0,

1S0)

�u=0,�d=0
(t)

.(11)

Consequently, the di↵erence between ratios at neighbor-
ing timeslices determines the isovector matrix element;

R3S1,
1S0

(t) ⌘ R3S1,
1S0

(t+ 1)�R3S1,
1S0

(t)

t!1
�!

⌦
3S1; Jz = 0

��A3

3

�� 1S0; Iz = 0
↵

ZA

, (12)

in the limit where �E = Ed � Epp is small (as is
the case with the quark masses used in this calcu-
lation [47]), and when the contributions from excited
states are suppressed. This quantity, measured with
both SS and SP correlators, is shown in Fig. 3, along
with the extracted value of the axial matrix element,⌦
3S1; Jz = 0

��A3

3

�� 1S0; Iz = 0
↵
/ZA = 2.568(5)(17), where

the first uncertainty is statistical and the second is a
systematic encompassing choices of fit ranges in time
and field strength as well as variations in analysis tech-
niques. At the pion mass of this study, the initial and
final two-nucleon states are deeply bound [47] and the
finite-volume e↵ects in the matrix elements are negligi-
ble [59, 60]. At lighter values of the quark masses, where
the np(1S0) system and/or the deuteron are unbound or
only weakly bound, the connection between finite-volume
matrix elements and transition amplitudes requires the
framework developed in Refs. [59, 60].
To isolate the two-body contribution, the combina-

tion Lsd�2b

1,A
(t)/ZA = [R3S1,

1S0
(t) � 2Rp(t)]/2 is formed

as shown in the lower panel of Fig. 3. Taking advantage
of the near-degeneracy of the 3S1 and 1S0 two-nucleon

diagonal pieces with no field

transition pieces linear in Λ



Finite-volume quantisation condition: relate                  to scale-indep. LECs
• Pionless EFT: 
• Dibaryon formalism: 

Define a new related quantity,          , which should have mild pion-mass 
dependence (remove effective range terms in         )

Extrapolate           to the physical point

      Prediction for               at the physical point

      Prediction for physical cross-section

Want to relate lattice QCD ME to 

LECs of EFTs
pp-fusion cross section  

Proton-proton fusion

hd; 3|A3
3|ppi

Detmold and Savage, Nucl. Phys. A743, 170 (2004). 

L1,A

`1,A

Lsd�2b
1,A

Lsd�2b
1,A

L1,A, `1,A

L1,A



Axial field splits degeneracy of the nucleon doublet
      and       channels mix
Construct 2x2 inverse scattering amplitude matrix in background field 
 
 
 
 
 
 
 

Continuum integrals from bubble diagrams           discrete sums
Det = 0             poles of scattering amplitude             eigenenergies

Finite-volume quantisation

1S0
3S1

= ++ + …
= ++ + …
= gA = L1,A

+

+
O(�)

Briceno, Davoudi ,Phys.Rev. D88 (2013) 094507



Det of inverse scattering matrix = 0               eigenenergies are 
solutions of  
 
 
 

Matrix element related to LEC 

Define combination that characterises two-nucleon contribution  
Expect mild pion-mass dependence          can extrapolate

Finite-volume quantisation

Lsd�2b
1,A ⌘ (hd; 3|A3

3|ppi � 2gA)/2

2

the two-body contribution shows up at the tree-level, it is most convenient to define a new

two-nucleon coupling, l̃1,A, in this framework,

l̃1,A
2M

p
r1r3

⌘ l1,A
2M

p
r1r3

+ 2

⇣gA
2

⌘
, (6)

or

l̃1,A ⌘ l1,A + 2M
p
r1r3gA. (7)

The reason for choosing to add the gA term as opposed to subtract it in order to obtain a

solely two-nucleon contribution will become clear in item (4) below. Now with the use of the

matching Eq. (4), this turns into an equivalent definition for a new two-nucleon coupling in

the nucleon formalism

L̃1,A ⌘ L1,A +
1

2

p
r1r3. (8)

Note that this is not quite L̃1,A that is defined in the draft at the moment but is what was

used in all previous papers, including NPLQCD’s!

4. Finite-volume quantization condition: In the nucleon formalism, I find the following relation

between the energy eigenvalues in a finite volume and the bare weak couplings

h
p cot �

3S1 + �GV
0 (p;L)

i h
p cot �

1S0 + �G0
V
(p;L)

i
=

⇥
W3gAML1,A �W3gAG

V
1 (p;L)

⇤2
,

(9)

where

�GV
0 (p;L) = 4⇡

"
1

L3

X

k

�
Z

d3k

(2⇡)3

#
1

k2 � p2
, GV

1 = 4⇡
1

L3

X

k

1

(k2 � p2)2
. (10)

5. Degenerate deeply bound two-nucleon states as in the m⇡ = 800 MeV world : The simplest

limit of this QC is where the initial and final states are deeply bound and are degenerate

up to weak interactions. In this limit, the QC can be expanded in the small energy shift

between the two channels in presence of the weak interactions, and degenerate perturbation

theory gives

|�E3S1�1S0 |/W3 = 2|h3S1 |A3
3|1S0i| = Z2

d(4gA�L1,A + 2gA). (11)

up to exponentially small corrections that scale as e��L/L, where � = �ip is the binding

momentum of the bound state in absence of weak interactions, and Zd = 1/
p
1� �r3 is the

residue of the deuteron propagator at the pole (which in this limit is the same as that for

the pp channel). From this matrix element we form

2h3S1 |A3
3|1S0i � 2gA
2

= 2Z2
d�gA(L1,A +

r

2
). (12)
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limit of this QC is where the initial and final states are deeply bound and are degenerate
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between the two channels in presence of the weak interactions, and degenerate perturbation
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of these ratios lead to

gA(3H)

ZA

= 1.272(6)(22),
gA(3H)

gA
= 0.979(3)(10), (6)

where the first uncertainties are statistical and the second
arise from systematics as described for gA. The result for
gA(3H)/gA is quite close to the precise, experimentally-
determined value of hGTi = 0.9511(13) [6] at the phys-
ical quark masses. In the context of ⇡/EFT, the short-
distance two-nucleon axial-vector operator, with coe�-
cient L1,A [4], is expected to give the leading contribution
to the di↵erence of this ratio from unity.

The Low-Energy Proton-Proton Fusion Cross Section:
The low-energy cross section for pp ! de+⌫ is dictated
by the matrix element
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32⇡
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⇤(p) �jk, (7)

where Aa

k
(x) is the axial current with isospin and spin

components a and k respectively, j is the deuteron spin
index, C⌘ is the Sommerfeld factor and � is the deuteron
binding momentum. The quantity ⇤(p) has been calcu-
lated at threshold in ⇡/EFT to N2LO [3] and N4LO [4]
and later with a dibaryon approach [10]. With the ap-
proach of Ref. [4], resumming all of the e↵ective range
contributions [10, 56, 57], ⇤(0) at N2LO is related to the
renormalization-scale independent short-distance quan-
tity Lsd�2b

1,A
that is a solely two-body contribution, along

with scattering parameters and Coulomb corrections:
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Here � = ↵Mp/�, where ↵ is the QED fine-structure
constant and Mp is the mass of the proton. The pp scat-
tering length is app, r1 and ⇢ are the e↵ective ranges in
the 1S0 and 3S1 channels, respectively, and �(0,�) is the
incomplete gamma function. A determination of Lsd�2b

1,A
,

or equivalently of the ⇡/EFT coupling L1,A which is de-
termined from the scale-independent constant

L1,A =
1

2gA
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(as shown explicitly in Ref. [4]), is a goal of the present
LQCD calculations.

A background isovector axial-vector field mixes the
Jz = Iz = 0 components of the 3S1 and 1S0 two-
nucleon channels, enabling the pp-fusion matrix element
to be accessed. Using the new background field construc-

tion, the relevant o↵-diagonal matrix element C(
3
S1,

1
S0)

�u;�d
(t)

is a cubic polynomial in both �u and �d. In Ref. [39],
the analogous mixing between the two-nucleon channels
induced by an isovector magnetic field was treated by di-
agonalizing a (channel-space) matrix of correlators and

determining the splittings between energy eigenvalues.
This provided access to the matrix element dictating
np ! d� at low energies, as was proposed in Ref. [58].
Such a method can also be used for the axial field, but
the improved approach implemented here makes use of
the finite-order polynomial structure to access the matrix
element directly. For a background field that couples to
the u quarks,

C(
3
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1
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�u;�d=0
(t) = �u

tX

⌧=0

X
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u
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3

u
, (10)

where �3
3S1

(�1S0
) is an interpolating field for the Jz = 0

(Iz = 0) component of the 3S1 (1S0) channel, Au

3
=

u�3�5u, and c2,3 are irrelevant terms. Calculations of
the axial matrix element at three or more values of �u

allow for the extraction of the term that is linear in �u.
A similar procedure yields the term that is linear in �d

from background fields coupling to the d quark. Taking
the di↵erence of the ratios of these terms to the corre-
sponding zero-field two-point functions determines the
transition matrix element in the finite lattice volume;
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Consequently, the di↵erence between ratios at neighbor-
ing timeslices determines the isovector matrix element;
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in the limit where �E = Ed � Epp is small (as is
the case with the quark masses used in this calcu-
lation [47]), and when the contributions from excited
states are suppressed. This quantity, measured with
both SS and SP correlators, is shown in Fig. 3, along
with the extracted value of the axial matrix element,⌦
3S1; Jz = 0

��A3

3

�� 1S0; Iz = 0
↵
/ZA = 2.568(5)(17), where

the first uncertainty is statistical and the second is a
systematic encompassing choices of fit ranges in time
and field strength as well as variations in analysis tech-
niques. At the pion mass of this study, the initial and
final two-nucleon states are deeply bound [47] and the
finite-volume e↵ects in the matrix elements are negligi-
ble [59, 60]. At lighter values of the quark masses, where
the np(1S0) system and/or the deuteron are unbound or
only weakly bound, the connection between finite-volume
matrix elements and transition amplitudes requires the
framework developed in Refs. [59, 60].
To isolate the two-body contribution, the combina-

tion Lsd�2b

1,A
(t)/ZA = [R3S1,

1S0
(t) � 2Rp(t)]/2 is formed

as shown in the lower panel of Fig. 3. Taking advantage
of the near-degeneracy of the 3S1 and 1S0 two-nucleon
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FIG. 3. The ratios of correlation functions that determine
the unrenormalized isovector axial matrix element in the Jz =
Iz = 0 coupled two-nucleon system (upper panel), and the
unrenormalized di↵erence between the axial matrix element
in this channel and 2gA (lower panel). The orange diamonds
(blue circles) correspond to the SS (SP) e↵ective correlator
ratios and the bands correspond to fits to the asymptotic
plateau behavior.

channels at the quark masses used in this calculation, it
is straightforward to show that this correlated di↵erence
leads directly to the short-distance two-nucleon quantity,
Lsd�2b

1,A
. Fitting a constant to the late-time behavior of

this quantity leads to

Lsd�2b

1,A

ZA

=

⌦
3S1; Jz = 0

��A3

3

�� 1S0; Iz = 0
↵
� 2gA

2ZA

= �0.0107(12)(49), (13)

where the first uncertainty is statistical and the second
encompasses fitting and analysis systematics.

In light of the mild quark-mass dependence of the anal-
ogous short-distance, two-body quantity contributing to
np ! d� [39], Lsd�2b

1,A
is expected to be largely insensi-

tive to the masses of the light quarks. Consequently, the
result obtained here at m⇡ ⇠ 806 MeV can be used to
estimate the value of Lsd�2b

1,A
at the physical pion mass by

including an additional 50% additive uncertainty. Prop-
agating this uncertainty through Eq. (8), the threshold
value of ⇤(p) in this system at the physical quark masses
is determined to be ⇤(0) = 2.6585(6)(72)(25), where the
uncertainties are statistical, fitting and analysis system-
atic, and quark-mass extrapolation systematic, respec-
tively. Uncertainties in the scattering parameters and
other physical mass inputs are also propagated and in-
cluded in the systematic uncertainty. This result is re-
markably close to the currently accepted, precise phe-
nomenological value, ⇤(0) = 2.652(2) [11]. The N2LO re-
lation of Ref. [4], when enhanced by the summation of the
e↵ective ranges to all orders using the dibaryon field ap-
proach [10, 56, 57], gives ⇤(0) = 2.62(1) + 0.0105(1)L1,A,

enabling a determination of the ⇡/EFT coupling

L1,A = 3.9(0.1)(1.0)(0.3)(0.9) fm3, (14)

at a renormalization scale µ = m⇡. The uncertainties
are statistical, fitting and analysis systematic, mass ex-
trapolation systematic, and a power-counting estimate
of higher order corrections in ⇡/EFT, respectively. This
value is also very close to previous phenomenological es-
timates, as summarized in Refs. [11, 14].

Summary: The primary results of this work are the
isovector axial-current matrix elements in two and three-
nucleon systems calculated directly from the underly-
ing theory of the strong interactions using lattice QCD.
These matrix elements determine the cross section for the
pp fusion process pp ! de+⌫ and the Gamow-Teller con-
tribution to tritium �-decay, 3H !

3He e�⌫. While the
calculations are performed at unphysical quark masses
corresponding to m⇡ ⇠ 806 MeV and at a single lattice
spacing and volume, the mild mass dependence of the
analogous short-distance quantity in the np ! d� mag-
netic transition enables an estimate of the pp ! de+⌫
matrix element at the physical point, and the results are
found to agree within uncertainties with phenomenology.
Future LQCD calculations including electromagnetism at
lighter quark masses, larger volumes, and finer lattice
spacings, making use of the new techniques that are in-
troduced here, will enable extractions of these axial ma-
trix elements with fully quantified uncertainties and will
be of great importance in phenomenology, providing in-
creasingly precise values for the pp-fusion cross section
and GT matrix element in tritium �-decay.
Beyond the current study, background axial-field cal-

culations also allow the extraction of second-order, as
well as momentum-dependent, responses to axial fields.
Second-order responses are important for determining
nuclear ��-decay matrix elements, both with and with-
out (for a light Majorana neutrino) the emission of associ-
ated neutrinos. Momentum-dependent axial background
fields will allow the determination of nuclear e↵ects in
neutrino-nucleus scattering. In both cases, LQCD calcu-
lations of these quantities in light nuclei will provide vi-
tal input with which to constrain the nuclear many-body
methods that are used to determine the matrix elements
for these processes in heavy nuclei.
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FIG. 3. The ratios of correlation functions that determine
the unrenormalized isovector axial matrix element in the Jz =
Iz = 0 coupled two-nucleon system (upper panel), and the
unrenormalized di↵erence between the axial matrix element
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Figure 1: Representation of the energies of the A = 76 isobars. The single-beta decay (β)—green arrows—
between 76Ge and 76Se is energetically forbidden, hence leaving double beta (ββ)—pink arrow—as the
only decay channel. The two mass parabolas exist because of the pairing interaction that lowers the energy
of even Z—even N nuclei with respect to odd Z—odd N nuclei. For odd A nuclei there is a single mass
parabola, and all single-beta transitions are energetically allowed (taken from J. Menendez’s PhD thesis).

nuclei [3], with lifetimes in the range 1018–1022 y. The alternative is the neutrinoless double-
beta decay (0νββ), proposed by Furry [4]after the Majorana theory of the neutrino [5]. The
neutrinoless decay 0νββ can only take place if the neutrino is a massive Majorana particle
and demands an extension of the standard model of the electroweak interactions, because
it violates the lepton number conservation. Therefore, the observation of the double-beta
decay without emission of neutrinos will sign the Majorana character of the neutrino. The
corresponding nuclear reactions are the following:

A
ZXN−→A

Z+2XN−2 + 2e− + 2νe,

A
ZXN−→A

Z+2XN−2 + 2e−.
(1.1)

Currently, there is a number of experiments either taking place or expected for the
near future—see, for example, [6, 7]and Section 7.3.—devoted to detect this process and to
set up firmly the nature of neutrinos. Most stringent limits on the lifetime are of the order of
1025 y. A discussed claim for the existence of 0νββ decay in the isotope 76Ge (see Section 7.1)
declares that the half-life is about 2.2×1025 y [8]. Furthermore, the 0νββ decay is also sensitive
to the absolute scale of the neutrino masses (if the process is mediated by the so-called mass
mechanism), and hence to themass hierarchy (see Section 2). Since the half-life of the decay is
determined, together with the effective Majorana neutrino mass (defined later in Section 2),
by the nuclear matrix elements for the process NME, its knowledge is essential to predict the
most favorable decays and, once detection is achieved, to settle the neutrino mass scale and
hierarchy.

Another process of interest is the resonant double-electron capture which could
have lifetimes competitive with the neutrinoless double-beta decay ones only if there is a
degeneracy of the atomic mass of the initial and final states at the eV level [9]. For the
moment, high-precision mass measurements have discarded all the proposed candidates
(see [10] for a recent update of the subject). As in the neutrinoless double-beta decay,
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tant as the e↵ective quenching of the axial charge in the
two-nucleon system.

The numerical calculations in this work are performed
at unphysical values of the quark masses and for a dis-
allowed decay. While there is no immediate phenomeno-
logical impact of the numerical values of the matrix el-
ements that are extracted, the observed behavior does
provide an important lesson for many-body calculations.
In typical calculations of two-neutrino (2⌫��) decay, the
nuclear matrix elements are calculated using two inser-
tions of the axial current in a truncated model space, with
a quenched value of gA tuned to reproduce experiment.
If the findings presented here persist at the physical val-
ues of the quark masses, they would imply that a sig-
nificant contribution has been ignored in standard 2⌫��
calculations, resulting in a source of uncertainty in the
nuclear matrix elements that remains to be quantified.
Importantly, this uncertainty can only be constrained us-
ing ��-decay measurements or numerical calculations. In
0⌫�� decays, the situation becomes even less certain, in
part due to dependence on possible scenarios of physics
beyond the SM. With a light Majorana neutrino, gen-
eralisations of the axial polarisability will also likely be
relevant.

In what follows, the lattice QCD and EFT(⇡/) calcu-
lations and the analysis of the axial polarisability are
summarised, with complete details to be presented in a
subsequent paper [7]. The potential for future lattice
QCD calculations to provide the necessary input to con-
strain many-body calculations of 2⌫�� and 0⌫�� matrix
elements, and thereby reduce the uncertainties in calcu-
lated ��-decay rates, is also discussed.

Two-neutrino ��-Decay: The focus of this Letter is on
2⌫�� decay of the dinucleon system. The decay width is
given by

[T 2⌫
1/2]

�1 = G2⌫(Q)|M2⌫
GT |

2, (1)

where Q = Enn � Epp, G2⌫(Q) is a known phase-space
factor [8, 9], and the Gamow-Teller matrix element in the
two-nucleon system is

M2⌫
GT = 6

Z
d4xd4yhpp|T

⇥
J+
3 (x)J+

3 (y)
⇤
|nni

= 6
X

l

hpp|J+
3 |lihl|J+

3 |nni

El � (Enn + Epp)/2
. (2)

Here, J+
3 = (J1

3 + iJ2
3 )/

p
2 is the 3rd-component of the

�I3 = 1 axial-vector current, Ja
µ = 1

2q�µ�5⌧
aq, and l

indexes a complete set of zero-momentum hadronic states
with the quantum numbers of the deuteron. The factors
of 6 in Eq. (2) are due to rotational symmetry and our
normalization of the currents.

As with forward Compton scattering, the amplitude
can be written in terms of a Born term, corresponding to
an intermediate deuteron state, and the isotensor axial

polarisability which absorbs the contributions from the
remaining states in the above summation. By isospin
symmetry, this polarisability is most cleanly identified as
the forward matrix element of the I = 2, I3 = 0 com-
ponent of the time-ordered product of two axial-vector
currents in the 1S0 np ground-state with the deuteron
pole (the Born term) omitted. For use below, isospin
relations allow this matrix element to be written as

hpp|J+
3 J+

3 |nni = hnp|J (u)
3 J (u)

3 |npi �
1

2
hnn|J (u)

3 J (u)
3 |nni

�
1

2
hnn|J (d)

3 J (d)
3 |nni, (3)

where J (q)
3 = q�3�5q.

Pionless e↵ective field theory: EFT(⇡/) [10–15] e�ciently
describes two-nucleon systems in the regime where mo-
menta are small compared to the pion mass. This is an
appropriate tool with which to address 2⌫�� decays at
heavier quark masses, but the inclusion of explicit pion
degrees of freedom will likely be required at the physi-
cal quark masses (0⌫�� decay probes higher momenta,
k ⇠ 100 MeV, in large nuclei and likely also requires
an EFT with explicit pion degrees of freedom). In what
follows, the dibaryon formalism of EFT(⇡/) is utilised,
using the conventions for the strong-interaction sector
described in Ref. [15]. The nucleon degrees of free-
dom are encoded in the field N , and the two-nucleon de-
grees of freedom enter as the isosinglet, ti, and isotriplet,
sa, dibaryon fields while yt and ys describe the cou-
plings between two nucleons and the dibaryon fields. In
this formalism, the single axial-current interactions enter
through the Lagrangian [16–19]

L
(1) = �

gA
2
N†W a

3 �3⌧
aN

�

 
gA +

l̃1,A
2M

p
rsrt

!⇣
W a

3 t
†
3s

a + h.c.
⌘
, (4)

where rs(t) is the e↵ective range in the 1S0(3S1)
two-nucleon channel, �i(⌧a) are Pauli matrices in
spin(flavour) space, gA and l̃1,A are the one- and two-
nucleon axial couplings, and W a

3 is an axial isovector
field aligned in the j = 3 spatial direction. The second
term is constructed so that l̃1,A corresponds to a purely
two-body current e↵ect. The second-order isotensor axial
interaction in the 1S0 channel enters as

L
(2) = �

 
Mg2A
4�2

s

+
h̃2,S

2Mrs

!
W

absa†sb, (5)

where W
ab = W {a

3 W b}
3 is the traceless symmetric com-

bination of two axial fields at the same location, h̃2,S

is the scalar isotensor weak two-nucleon coupling and
�s =

p
MBnn with the binding energy of the 1S0 sys-

tem being Bnn (at the unphysical masses used herein,
the 1S0 system is bound [20]).
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deuteron systems, respectively. Here Zn ⇠ h0|�pp|ni and
Zm ⇠ h0|�nn|mi are overlap factors, and El = Enn + �l
and E0

n = Enn + �0n are the energies of the lth and nth
excited states in the 3S1 and 1S0 channels, respectively.

Forming a ratio of Eq. (11) to the zero-field two-point
function,

R(t) =
C(t)

2C(nn)
0;0 (t)

, (12)

it is straightforward [7] (assuming isospin symmetry) to
show that

R̂(t) = R(t)�
|hpp|J+

3 |di|2

�


e�t

� 1

�
� t

�
(13)

= t
X

l6=d

hpp|J+
3 |lihl|J+

3 |nni

El � Enn
+ c+ d e�t +O(e��̂t),

where c and d involve complicated combinations of ex-
cited states, and �̂ is the minimum energy gap between
the ground- and first excited- state in either channel; and,
for these calculations, �̂ � �. Importantly, the coe�-
cient of the linear term determines the axial polarisability
and can be extracted from

R
(lin)(t) =

(e� + 1)R̂(t+ 1)� R̂(t+ 2)� e�R̂(t)

e� � 1
(14)

at late times. Finally, this result can be combined with
the deuteron-pole contribution to give a quantity that
asymptotes to the bare Gamow-Teller matrix element at
late times,

R
(full)(t) = R

(lin)(t)�
|hpp|J+

3 |di|2

�
t!1
�!

M2⌫
GT

6Z2
A

. (15)

The four ratios used to determine M2⌫
GT are shown in

Fig. 1 for both SS and SP source–sink combinations. Fits
are performed to the statistically more precise SP corre-
lators and the values of the total matrix element and
the short-distance contribution, normalised by the naive
deuteron-pole matrix element g2A/�, are given by

�

g2A

X

l6=d

hpp|J+
3 |lihl|J+

3 |nni

El � Enn
= �0.07(4)(3), (16)

1

6

�

g2A
M2⌫

GT = �1.03(5)(3). (17)

In these expressions, the first uncertainties arise from sta-
tistical sampling and from systematic e↵ects from fitting
choices and deviations from Wigner symmetry [7]. The
second uncertainties encompass di↵erences between anal-
ysis methods. The leading discretisation e↵ects, which
are potentially large on the numerically smaller polaris-
ability term, are removed by normalising to the square of
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FIG. 1. Ratios from Eqs. (12)–(15) used in the analysis. In
each panel, the orange diamonds (blue circles) correspond to
the SS (SP) data. The green bands show fits to the SP data
in the lower two panels. The SS data are slightly o↵set in the
horizontal direction for clarity. The di↵erence between the SS
and SP ratios in the upper two panels is due to contamination
that is removed in constructing the subsequent quantities in
the lower panels.

the proton axial charge computed using the same lattice
axial current on the same ensemble.

Discussion: The computed value ofM2⌫
GT that has been

determined above can be used to determine the unknown
EFT(⇡/) low-energy constant H2,S . Taking the values of
gA and the two-body single-current matrix element from
Ref. [6], and using the calculated binding energies and
e↵ective ranges of the two-nucleon systems [20, 28], the
result is H2,S = 4.7(1.3)(1.8) fm. The dominant contri-
bution to M2⌫

GT comes from the deuteron pole with cou-
pling g2A. This is modified by two-body e↵ects in the axial

M
2
⌫

G
T

�
(I

=
2
)

A

M2⌫
GT = � |Mpp!d|2

Epp � Ed
+ �(I=2)

A

Isotensor axial polarisability

PRL 119, 062003 (2017), PRD 96, 054505 (2017)
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gx̂,ŷ(y,Q2): probability of finding a gluon with momentum fraction y

linearly polarized in the x̂, ŷ direction
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Gluonic Transversity

hp|O|pi = 0, hN,Z|O|N,Zi 6= 0

hp|O|pi = 0, hN,Z|O|N,Zi 6= 0

3

where Q denotes the quark charge matrix and at leading
order there is no dependence on the factorization scale.

In a spin-one target with polarization E and E0, the
forward matrix element of the operator O is

hpE0
|Oµ⌫µ1...µn |pEi

= (�2i)n�2 1

2
S [{ (pµE

0⇤
µ1

� pµ1E
0⇤
µ

)(p⌫Eµ2 � pµ2E⌫)

+ (µ $ ⌫)} pµ3 . . . pµn ]An(µ2),
(10)

where ‘S’ is as above2.
The reduced matrix elements An, for even n, can be

related to moments of the structure function �(x,Q2).
Writing the subtracted dispersion relation for the double-
helicity-flip part of the matrix element of Tµ⌫ (Eq. (7))
and using the optical theorem to relate the imaginary
part of the matrix element of Tµ⌫ to Wµ⌫ (and hence to
�(x,Q2)) gives the identification

Mn(Q2) = Cn(Q2, Q2)
An(Q2)

2
, n = 2, 4, 6 . . . , (11)

where An is renormalized at the scale µ2 = Q2, and

Mn(Q2) =

Z 1

0
dxxn�1�(x,Q2) (12)

are the Mellin moments of �(x,Q2).
The structure function �(x,Q2) also has a parton

model interpretation. For a target in the infinite momen-
tum frame polarized in the x̂ direction perpendicular to
its momentum (defined to be in the ẑ direction),

�(x,Q2) = �
↵s(Q2)

2⇡
TrQ2 x2

Z 1

x

dy

y3
�G(y,Q2), (13)

where �G is again renormalized at the scale µ2 = Q2,
and

�G(x, µ2) = gx̂(x, µ
2) � gŷ(x, µ

2). (14)

Here gx̂,ŷ(x, µ2) denotes the probability of finding a gluon
with longitudinal momentum fraction x linearly polar-
ized in either of the transverse directions, x̂ or ŷ, in the
transversely polarized target.

III. LATTICE CALCULATIONS

In order to calculate the reduced matrix elements An

appearing in Eqs. (10) and (11) using lattice QCD, we
must calculate the expectation values of local operators

2
This definition of An di↵ers from that in Ref. [7] by a factor of

two, chosen for convenience for the discussion of the So↵er bound

in this work.

of the form of Eq. (8). Here we describe these lat-
tice calculations, discuss the construction of appropri-
ate Euclidean-space local operators for the n = 2 case,
and summarize the methods used to extract the corre-
sponding reduced matrix element A2. Since this is an
exploratory calculation, it is performed at a single set of
lattice parameters and a number of systematic issues are
left to future work.

A. Lattice Simulation

Calculations were performed on an ensemble of
isotropic gauge-field configurations with Nf = 2 + 1
flavours of dynamical quarks. Specifics of this ensemble
are given in Table I [16]. The lattices have dimensions
L3

⇥T = 243⇥64 with lattice spacing a = 0.1167(16) fm.
The Lüscher-Weisz gauge action [17] was employed with a
clover-improved quark action [18] with one level of stout
link smearing (⇢ = 0.125) [19]. The clover coe�cient
was set equal to its tree-level tadpole-improved value.
The light quark masses are such that the pion mass is
450(5) MeV and the strange quark mass is such that the
resulting mass of the � is 1040(3) MeV.

B. Lattice Operator Construction

In this work we consider the lowest dimension (n = 2)
operator of the tower in Eq. (8):

Oµ⌫µ1µ2 = S [Gµµ1G⌫µ2 ] . (15)

The symmetrized and trace-subtracted operator trans-
forms irreducibly as (2, 2) under the Lorentz group and
does not mix with quark-bilinear operators of the same
dimension under renormalization (this operator mixes
into higher twist four-quark operators, but the reverse
mixing is highly suppressed). On a hypercubic lattice,
the Lorentz group is reduced to the hypercubic group
H(4), increasing the possibilities for operator mixing.

Lattice operators with the appropriate continuum be-
havior that are safe from mixing with lower or same-
dimensional operators can be constructed by considering
their symmetry properties under H(4). The basic build-
ing block of such operators is

O
(E)
µ⌫µ1µ2

= G(E)
µµ1

G(E)
⌫µ2

, (16)

where symmetrisation of indices is not implied.
The transformation properties of quark operators with

the symmetries of Eq. (16) under H(4) were described,
for the n = 2 case, in Ref. [20]. We use the same nota-
tion as in that work, with the 20 inequivalent irreducible

representations of H(4) denoted by ⌧ (d)
k

where d denotes
the dimension of the representation and k distinguishes
between inequivalent representations of the same dimen-
sion. Using the embedding of H(4) into GL(4) to classify

⇥
gx̂(y,Q

2)� gŷ(x,Q
2)
⇤

Jaffe and Manohar, “Nuclear Gluonometry” Phys. Lett. B223 (1989) 218
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where Q denotes the quark charge matrix and at leading
order there is no dependence on the factorization scale.

In a spin-one target with polarization E and E0, the
forward matrix element of the operator O is
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2) � gŷ(x, µ

2). (14)
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with longitudinal momentum fraction x linearly polar-
ized in either of the transverse directions, x̂ or ŷ, in the
transversely polarized target.

III. LATTICE CALCULATIONS

In order to calculate the reduced matrix elements An

appearing in Eqs. (10) and (11) using lattice QCD, we
must calculate the expectation values of local operators

2
This definition of An di↵ers from that in Ref. [7] by a factor of

two, chosen for convenience for the discussion of the So↵er bound

in this work.

of the form of Eq. (8). Here we describe these lat-
tice calculations, discuss the construction of appropri-
ate Euclidean-space local operators for the n = 2 case,
and summarize the methods used to extract the corre-
sponding reduced matrix element A2. Since this is an
exploratory calculation, it is performed at a single set of
lattice parameters and a number of systematic issues are
left to future work.

A. Lattice Simulation

Calculations were performed on an ensemble of
isotropic gauge-field configurations with Nf = 2 + 1
flavours of dynamical quarks. Specifics of this ensemble
are given in Table I [16]. The lattices have dimensions
L3

⇥T = 243⇥64 with lattice spacing a = 0.1167(16) fm.
The Lüscher-Weisz gauge action [17] was employed with a
clover-improved quark action [18] with one level of stout
link smearing (⇢ = 0.125) [19]. The clover coe�cient
was set equal to its tree-level tadpole-improved value.
The light quark masses are such that the pion mass is
450(5) MeV and the strange quark mass is such that the
resulting mass of the � is 1040(3) MeV.

B. Lattice Operator Construction

In this work we consider the lowest dimension (n = 2)
operator of the tower in Eq. (8):

Oµ⌫µ1µ2 = S [Gµµ1G⌫µ2 ] . (15)

The symmetrized and trace-subtracted operator trans-
forms irreducibly as (2, 2) under the Lorentz group and
does not mix with quark-bilinear operators of the same
dimension under renormalization (this operator mixes
into higher twist four-quark operators, but the reverse
mixing is highly suppressed). On a hypercubic lattice,
the Lorentz group is reduced to the hypercubic group
H(4), increasing the possibilities for operator mixing.

Lattice operators with the appropriate continuum be-
havior that are safe from mixing with lower or same-
dimensional operators can be constructed by considering
their symmetry properties under H(4). The basic build-
ing block of such operators is

O
(E)
µ⌫µ1µ2

= G(E)
µµ1

G(E)
⌫µ2

, (16)

where symmetrisation of indices is not implied.
The transformation properties of quark operators with

the symmetries of Eq. (16) under H(4) were described,
for the n = 2 case, in Ref. [20]. We use the same nota-
tion as in that work, with the 20 inequivalent irreducible

representations of H(4) denoted by ⌧ (d)
k

where d denotes
the dimension of the representation and k distinguishes
between inequivalent representations of the same dimen-
sion. Using the embedding of H(4) into GL(4) to classify

⇥
gx̂(y,Q

2)� gŷ(x,Q
2)
⇤

Jaffe and Manohar, “Nuclear Gluonometry” Phys. Lett. B223 (1989) 218



Non-nucleonic glue in deuteron

PRELIMINARY

First moment of gluon transversity 
distribution in the deuteron,  
m𝞹 ~800 MeV

First evidence for non-nucleonic gluon 
contributions to nuclear structure 

Hypothesis of no signal ruled out to 
better than one part in 107

Magnitude relative to momentum 
fraction as expected from large-Nc
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Tensor
Quark electric dipole 
moment (EDM) 
contributions to the EDMs 
of light nuclei

Input for searches for 
nuclear EDMs as evidence 
for BSM CP violation

Axial, scalar, tensor charges of light nuclei A<4, at unphysical 
value of the quark masses m𝞹 ~800 MeV

Complete flavour-decomposition including strange quarks

Scalar
Possible DM 
interaction is through 
scalar exchange 
Direct detection 
depends on nuclear 
matrix element

Scalar & tensor nuclear MEs
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Complete flavour-decomposition including strange quarks
Disconnected contributions estimated stochastically 
[Arjun Gambhir, LLNL & LBNL]

Strange matrix elements
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Scalar & tensor nuclear MEs

ME
Nucleon ME

naive  
expectation

Naive expectation determined by 
baryon#, isospin, spin
O(10%) nuclear effects in the scalar 
charges
Nuclear modifications scale with 
magnitude of corresponding charge (i.e., 
baryon# for scalar, spin for tensor, axial)
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Nuclear matrix elements important to experimental 
programs e.g,

Neutrino breakup reaction (SNO)
Muon capture reaction (MuSun)
Double-beta decay
Electron-Ion Collider
Nuclear electric dipole moments
Dark matter direct detection

Current state-of-the-art: significant systematics but 
phenomenologically interesting at current precision

Nuclear MEs from LQCD
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‘Exotic’ Glue in the Nucleus

‘Exotic’ Glue
Contributions to gluon

observables that are not from

nucleon degrees of freedom.

Exotic glue operator:

operator in nucleon = 0

operator in nucleus 6= 0
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