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Plan

• Introduction

• Formalism:

– Non-relativistic EFT and dimer picture

– Independence from the off-shell effects

– Quantization condition

• Comparison with other approaches

• Symmetries of the box and reduction of the quantization
condition

• The finite volume spectrum: bound and scattering states

• The shift of the ground state

• Conclusions, outlook
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Extracting three-particle observables from the lattice

K. Polejaeva and AR, EPJA 48 (2012) 67

Finite volume energy levels determined solely by the S-matrix

M. Hansen and S. Sharpe, PRD 90 (2014) 116003; PRD 92 (2015) 114509

Quantization condition

R. Briceno and Z. Davoudi, PRD 87 (2013) 094507

Dimer formalism, quantization condition

P. Guo, PRD 95 (2017) 054508

Quantization condition in the 1+1-dimensional case

S. Kreuzer and H.-W. Hammer, PLB 694 (2011) 424; EPJA 43 (2010) 229; PLB 673

(2009) 260; S. Kreuzer and H. W. Grießhammer, EPJA 48 (2012) 93

Dimer formalism, numerical solution

M. Mai and M. Döring, EPJA 53 (2017) 240

Three-body unitarity + analyticity (similar in spirit to the present approach)

Alternative approach: HAL QCD

→֒ Is the finite-volume spectrum determined solely by the
three-body S-matrix elements in the infinite volume?
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The strategy

Quantization condition very complicated, involves “unconventional”
scattering amplitudes . . .

→֒ Do not try to extract the amplitudes directly from data, in analogy
to Lüscher’s formula!

→֒ Extract low-energy couplings, get amplitudes by solving
scattering equations in the infinite volume!

• NREFT: relativistic kinematics will be included later

• Effective couplings: only exponentially suppressed effects at
large volumes!

? Is the information about the S-matrix sufficient to uniquely
determine the spectrum? Do the off-shell couplings, which are
not fixed from matching to the S-matrix, contribute to the
finite-volume energies?
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NREFT: dimer picture in the two-particle sector

L = ψ†

(

i∂0 −
∇2

2m

)

ψ + L2

L2 = −C0

2
ψ†ψ†ψψ − C2

4
(ψ†∇2ψ†ψψ + h.c.) + · · ·

C0, C2, . . . matched to p cot δ(p) = − 1
a + r

2 p
2 + · · ·

+ ... + ...dimer: + +

L2 → Ldimer
2 = σT †T +

(

T †
[
f0ψψ + f1ψ∇2ψ + · · ·

]
+ h.c.

)

• Dimer framework algebraically equivalent to the three-particle
framework

• Higher partial waves can be included: dimers with arbitrary spin

• Can be generalized to the non-rest frames
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Off-shell term, two particle sector

〈p|L2|q〉 = −2C0 − C2(p
2 + q2)− C4(p

2 + q2)2 − C ′
4(p

2 − q2)2 + · · ·

Off-shell term can be eliminated with the use of EOM

−C
′
4

4

(

ψ†∇4ψ†ψψ − ψ†∇2ψ†ψ∇2ψ + h.c

)

=
C ′

4

4
m2∂2t (ψ

†ψ†ψψ)

Insertions of the off-shell term vanish on shell (dim.reg., no scale)

∫
ddk

(2π)d
(p2 − k2)2

1

k2 − q20
f(k) = (p2 − q20)

2

∫
ddk

(2π)d
1

k2 − q20
f(k)

+ no scale integrals

• The result does not depend on the regularization

• No off-shell term in the dimer formulation: one coupling at each
order
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Off-shell term in the three-particle sector

L
(4)
3 =

D′′
4

12

(

ψ†ψ†
∇

4ψ† ψψψ + 2ψ†
∇

2ψ†
∇

2ψ† ψψψ − 3ψ†ψ†
∇

2ψ† ψψ∇2ψ + h.c.
)

+ · · ·

• Off-shell term proportional to D′′
4 can be eliminated using EOM

• In the momentum space, the potential is proportional to

V off−shell ∝ D′′
4 (E(p)− E(q))2 , E(p) =

1

2m
(p2

1 + p2
2 + p2

3)

All insertions of this potential vanish on shell (no-scale integrals)

→֒ The S-matrix does not depend on D′′
4 !

L
dimer
3 = h0T

†Tψ†ψ + h2T
†T (ψ†

∇
2ψ + h.c.)

+ h4T
†T (ψ†

∇
4ψ + h.c.) + h′4T

†T∇2ψ†
∇

2ψ + · · ·

• Two couplings h4, h
′
4: off-shell coupling D′′

4 can be eliminated!

A. Rusetsky, INT Workshop “Multi-Hadron Systems from Lattice QCD,” February 6, 2018, Seattle – p.7



Why are there no off-shell terms in the dimer picture

Off-shell dimers are physical:

p
d

p
2

p
3

p
1

q
d

q
2

q
3

q
1

= +
������
������
������
������
������
������

������
������
������
������
������
������

p2
d = (p1 + p2)

2 , q2
d = (q1 + q2)

2

p2
d 6= q2

d
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The scattering equation
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M(p,q;E) = Z(p,q;E) +

∫ Λ

k

Z(p,k;E)τ(k;E)M(k,q;E)

Z(p,q;E) =
1

p2 + q2 + pq−mE
+H0 +H2(p

2 + q2) + · · ·

H0, H2, . . . are related to the couplings h0, h2, . . .

τ−1(k;E) = k∗ cot δ(k∗) +

√

3

4
k2 −mE

︸ ︷︷ ︸

=k∗
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Finite volume

k =
2π

L
n , n ∈ Z

3 ,

∫ Λ

k

→ 1

L3

Λ∑

k

ML(p,q;E) = Z(p,q;E) +
8π

L3

Λ∑

k

Z(p,q;E)τL(k;E)ML(k,q;E)

τ−1
L (k;E) = k∗ cot δ(k∗)−4π

L3

∑

l

1

k2 + l2 + kl−mE

→֒ Poles in the amplitude → finite-volume energy spectrum

→֒ k∗ cot δ(k∗) fitted in the two-particle sector;

H0, H2, . . .should be fitted to the three-particle energies

→֒ S-matrix in the infinite volume → equation with H0, H2, . . .

→֒ No-scale arguments apply in the finite volume as well:
no off-shell effects in the finite volume spectrum!
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Quantization condition

The particle-dimer scattering amplitude:

ML = Z + ZτLML

The three-particle scattering amplitude:

T
(3)
L = τL + τLMLτL = (τ−1

L − Z)−1

The quantization condition:

the three-body energy levels coinside with the poles of T
(3)
L :

det(τ−1
L − Z) = 0

• The spectrum is determined only by the on-shell input!

• Compare with:
Polejaeva and AR, Hansen and Sharpe, Briceno and Davoudi, Mai and Döring!
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Comparison with Hansen & Sharpe

Relativistic vs. non-relativistic:

• Dynamics: No particle creation/annihilation,
except Briceno, Hansen and Sharpe, PRD 95 (2017) 074510:
connecting the 2- and 3-particle channels

(not needed for the energies below higher (4-particle) threshold)

• Kinematics: Can be taken into account via covariant NREFT:
Colangelo, Gasser, Kubis and AR, PLB 638 (2006) 187 (work in progress)

Introducing smooth cutoff H(q) on the spectator momentum q:

• Above a given spectator momentum q, the kernel is no more
singular, the regular summation theorem applies

• “Unconventional” scattering amplitude in the limit L→ ∞
• Similar in Polejaeva and AR, the smooth cutoff moved to zero!
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“Unconventional” scattering amplitude

• If no 2 → 3 transitions present, both approaches contain identical
sets of diagrams

• Particle-dimer formalism is algebraically equivalent to the
three-particle formalism

The role of the cutoff:

ML = Z +
∑

q

H(q)ZτLML +
∑

q

(1−H(q))ZτLML

ML = MH +
∑

q

H(q)MHτLML , MH = Z +

∫

q

(1−H(q))ZτMH

• MH related to the “unconventional” HS amplitude K3,df

• If cutoff H(q) is removed for |q| < Λ, then K3,df → H0(Λ) + . . .
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Comparison to Briceno & Davoudi

• Both approaches contain identical sets of diagrams

• In BD approach, dimers are characterized in terms of poles and
residues (both volume dependent)

• A cutoff emerges effectively: the highest pole in the dimer
propagator

• Relation of the energy spectrum to the three-particle amplitude
is algebraically rather complicated
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Comparison with Döring and Mai

• Relativistic approach based on the two- and three-particle
unitarity and analyticity

(suffices for the energies below the higher (4-particle) threshold)

• Isobar picture used: equivalent to the particle-dimer framework.
Not a model. The actual existence of the two-body resonance is
not required

• The quantization condition is identical to ours, except relativistic
kinematics

• Lagrangian is not specified. Fixing the Lagrangian would be
equivalent to the choice of parameterization of the two-body
scattering amplitude and the three-body force

See more in Maxim Mai’s talk!
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Reduction of the quantization condition: the symmetries

• Symmetry in a finite volume: octahedral group Oh, including
inversions (rest frame), little groups (moving frames)

• Reduction: an analog of the partial-wave expansion in a finite
volume

• Analog for a sphere |k| = const for a cube: shells

s =

{

k : k = gk0 , g ∈ Oh

}

• Each shell s is characterized by the reference momentum k0

• Shells are counted by increasing |k|
• The momenta, unrelated by the Oh, but having |k| = |k′|, belong

to the different shells
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The expansion in the basis of irreps

For an arbitrary function of the momentum p, belonging to a shell s,

f(p) = f(gp0) =
∑

Γ

∑

ij

T
(Γ)
ij (g)f

(Γ)
ji (p0) , Γ = A±

1 , A
±
2 , E

±, T±
1 , T

±
2

Projecting back the components:

G

sΓ
f
(Γ)
ji (p0) =

∑

g∈Oh

(T
(Γ)
ij (g))∗f(gp0) , G = dim(Oh) = 48

The quantization condition in the new basis partially diagonalizes

An alternative method of expansion: see Maxim Mai’s talk
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The expansion of the kernel

The kernel is invariant under Oh: Z(gp, gq) = Z(p,q)

Z(ΓΓ′,ij)
nm (r, s) =

∑

g,g′∈Oh

(T
(Γ)
in (g′))∗Z(g′p0(r), gk0(s))T

(Γ′)
jm (g)

=
∑

g,g′∈Oh

(T
(Γ)
in (g′))∗Z(g−1g′

︸ ︷︷ ︸

=g′′

p0(r),k0(s))T
(Γ′)
jm (g)

=
∑

g,g′′∈Oh

∑

k

(T
(Γ)
ik (g))∗(T

(Γ)
kn (g′′))∗Z(g′′p0(r),k0(s))T

(Γ′)
jm (g)

=
∑

g′′∈Oh

∑

k

G

sΓ
δΓΓ′δijδkm(T

(Γ)
kn (g′′))∗Z(g′′p0(r),k0(s))

=
G

sΓ
δΓΓ′δij

∑

g∈Oh

(T (Γ)
mn(g))

∗Z(gp0(r),k0(s))

=
G

sΓ
δΓΓ′δijZ

(Γ)
nm(r, s)
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Reduction of the equation

The equation determining the energy spectrum:

f(p) =
8π

L3

∑

s

∑

g∈Oh

ϑ(s)

G
Z(p, gk0(s))τ(s)f(gk0(s))

ϑ(s): the multiplicity of the shell s

Projecting the equation on a given irrep Γ:

f
(Γ)
i (r) =

8π

L3

∑

s

ϑ(s)τ(s)

G

∑

j

Z
(Γ)
ij (r, s)f

(Γ)
j (s) .

The quantization condition partially diagonalizes

det

(

τ(s)−1ϑ(s)−1δrsδij −
8π

L3

1

G
Z

(Γ)
ij (r, s)

)

= 0 .
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The finite-volume spectrum in the A1 irrep, CM frame
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• m = a = 1, Λ = 225, H0(Λ) = 0.192

• The spectrum both below and above the three-particle threshold
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Bound-state spectrum: E = −1.016 and E = −10
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Three-particle:
C

L3/2
exp

(

− 2√
3
κL

)

Particle-dimer:
C ′

L
exp

(

− 2√
3

√
κ2 − a−2L

)

. . . or, a linear combination thereof
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Scattering states
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12a3

πL5
(I2 + J ) +O(L−6) , I ≃ −8.914, J ≃ 16.532
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Avoided level crossing
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• Avoided level crossing between 3-particle and particle-dimer
states

• Where is the (displaced) particle-dimer threshold?
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Pushing up the energy level by a shallow bound state
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• Change the parameters: the shallow bound state disappears

• Displaced threshold can be easily identified!
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Extraction of the three-body couplings from the lattice data

The energy level displacements can be treated in perturbation theory,

are known up to and including O(L−7):
S.R. Beane, W. Detmold and M.J Savage, PRD 76 (2007) 074507; W. Detmold and M.J.

Savage, PRD 77 (2008) 057502; S.R. Sharpe, PRD 96(2017) 054515 . . .

∆E2 =
4πα

mL3

(

1 +
c1

L
+
c2

L2
+
c3

L3

)

+O(L−7)

∆E3 =
12πa

mL3

(

1 +
d1

L
+
d2

L2
+
d̄3

L3
lnL+

d3

L3

)

+O(L−7)

• The coupling d3 contains two-body contributions (scattering
length, effective radius) as well as the three-body term

• Three-body contributions can be separated, if the many-body
states (4,5,. . . particles) are included

• Multipion systems in lattice QCD has been considered
S.R. Beane, W. Detmold, T.C. Luu, K. Orginos, M.J. Savage and A. Torok, PRL

100 (2008) 082004
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Energy shift in the ϕ4 theory

F. Romero-López, A. Rusetsky and C. Urbach, in preparation

S =
∑

x

(

−κ
∑

µ

(ϕ∗
xϕx+µ + c.c.)− λ(|ϕx|2 − 1)2 + |ϕx|2

)

• The calculations are performed for different values of L

• For our choice of parameters λ and κ: perturbative, the phase
shift does nor exceed few degrees

• Single particle mass: perfectly fits the one-loop expression:

M(L)−M = const
K1(ML)

(ML)1/2
∼ const

exp(−ML)

(ML)3/2

• Extracting H0 at small L: does one have control over
exponentially suppressed contributions?
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Exponentially suppressed contribitions: 2-body levels

Using quasi-potential reduction of the Bethe-Salpeter equation. . .

E2 − 2M(L) =
1

L3
TL(0,0, E2)

TL = T̄L + T̄L(g
′
L − g∞)TL , T̄L = VL + VLg∞T̄L

Leading exponentially suppressed term:

p1

p2 q2

q1

k 1k+p −q 1

VL − V∞ ∼ exp(−ML)

(ML)1/2
→֒ E2 − 2M(L)

∣
∣
∣
∣
exp

∼ exp(−ML)

(ML)7/2
+ · · ·

→֒ The difference E2 − 2M(L) already captures the leading

exponentially suppressed contribution. The correction coming from

the potential is suppressed by an additional factor L−2
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Preliminary results of simulations

• The single-particle mass M(L), as well as two- and

three-particle levels E2 and E3 have been measured for different
values of L from L = 4 until L = 24.

• The two-body scattering lenght a and the effective radius r have
been extracted

• The three-body force has been extracted: definitely different
from zero!

Fernando Romero-López can tell more during his short talk . . .
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Conclusions

• An EFT formalism in a finite volume is proposed to analyze the
data in the three-particle sector

• The low-energy couplings H0, H2, . . . are fitted to the spectrum;
S-matrix is obtained through the solution of equations

• A systematic approach: allows the inclusion of higher partial
waves, derivative couplings, two → three transitions, relativistic
kinematics,. . .

• Equivalent to other known approaches, much easier to use!

• Reduction of the quantization condition is possible, according to
the octahedral symmetry

• Extraction of the three-body couplings both in non-perturbative
and perturbative regimes is discussed, backed by the lattice

results in the ϕ4 theory
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Outlook

• Three-particle Lellouch-Lüscher formula

• Three-nucleon interactions: inclusion of the long-range forces

• Inclusion of relativistic effects, higher partial waves, spin, partial
wave mixing, etc

• Full group-theoretical analysis of the three-particle equation in
the rectangular box including moving frames and the higher
partial waves

• Derivation of the shift of the three-particle and particle-dimer
ground-state levels from the quantization condition
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