Experimental motivations for studying few-hadron systems on the lattice

Alessandro Pilloni

Multi-Hadron Systems from Lattice QCD INT, Seattle, February 5th, 2018

Outline

- Introduction
- The light sector: the 3π system
 - $\frac{\eta', \omega}{\psi}$ and ϕ
 - The $a_1(1260)$
 - The hybrid π_1
 - The $a_1(1420)$
- The heavy sector: XYZ
 - The X(3872) and the Y states
 - Two-body subchannels: Z_c s and Z_b s
 - Complicated Dalitz plots

Experiment vs. Lattice QCD

- Higher and higher statistics
- Lots of multiparticles decay channels available
- Scattering information entangled to production mechanisms ×
- Experiments happen at the physical point only ×
 - Orthogonal systematics
 - Scattering information separated from production; unaccessible channels
 - Although QCD is rigid, one can vary the input parameters (quark masses, N_c and n_f) and study the effect on amplitudes

Experiment vs. Lattice QCD

 $[200] A_1$ $[111] A_1$ $\omega \pi \pi_{th}$ 0.29 0.29 $\pi\eta\eta|_{\rm th}$ 0.27 0.27 Lattice QCE $\pi K \overline{K}$ 0.25 0.25 $\left.\pi\eta'\right|_{\mathrm{thr.}}$ 0.23 0.23 0.21 0.21 $\pi\pi\pi$ $-K\overline{K}|_{\text{th}}$ 0.19 0.19 п $\frac{1}{\pi}\pi\eta\Big|_{\text{thr.}}$ 0.17 - 了 0.17 20 24 16 16 20 24

Intermediate step through a 2-body isobar (partial wave truncation)

Experiment vs. Lattice QCD

Intermediate step through a 2-body isobar (partial wave truncation)

Light spectrum (1-particle correlators)

The $a_1(1260)$ Events/(10MeV/c²) 00000 00000 a1(1260) [k] $I^{G}(J^{PC}) = 1^{-}(1^{++})$ Mass $m = 1230 \pm 40$ MeV ^[/] Full width $\Gamma = 250$ to 600 MeV a1(1260) DECAY MODES Fraction (Γ_i/Γ) p (MeV/c)20000 $(\rho \pi)_{S-wave}$ 353 seen $(\rho \pi)_{D-wave}$ 353 seen $(\rho(1450)\pi)_{S-wave}$ 10000 seen $(\rho(1450)\pi)_{D-wave}$ seen $\sigma\pi$ seen 0 0.5 $f_0(980)\pi$ 179 1 not seen $f_0(1370)\pi$ seen $f_{2}(1270)\pi$ seen $K\overline{K}^*(892)$ + c.c. seen

Despite it has been known since forever, the resonance parameters of the $a_1(1260)$ are poorly determined The production (and model) dependence is affecting their extraction

608

seen

 $\pi \gamma$

preliminary

1.5

 $M(\pi^{-}\pi^{-}\pi^{+})$ (GeV/c²)

The $a_1(1260)$

$a_1(1260)$ width

INSPIRE search

VALUE (MeV)	EVTS	DOCL	IMENT ID		TECN	COMMENT		
250 to 600	OUR ESTIMATE							
$367 \pm 9^{+28}_{-25}$	420k	ALEK	SEEV	2010	COMP	190 $\pi^- \rightarrow \pi^- \pi^- \pi^+ P b'$		
••• We do not use the following data for averages, fits, limits, etc. •••								
$410 \pm 31 \pm 30$		1 AUBE	RT	2007AU	BABR	10.6 $e^+ e^- \rightarrow \rho^0 \rho^{\pm} \pi^{\mp} \gamma$		
520 - 680	6360	2 LINK		2007A	FOCS	$D^0 \rightarrow \pi^- \pi^+ \pi^- \pi^+$		
480 <u>+</u> 20		3 GOME	Z-DUMM	2004	RVUE	$\tau^+ \to \pi^+ \pi^+ \pi^- \nu_{\tau}$		
580 <u>+</u> 41	90k	SALVI	NI	2004	OBLX	$\overline{p} p \rightarrow 2 \pi^+ 2 \pi^-$		
460 <u>+</u> 85	205	4 DRUT	SKOY	2002	BELL	$B^{(*)} K^{-} K^{*0}$		
$814 \pm 36 \pm 13$	37k	5 ASNE	R	2000	CLE2	10.6 $e^+ e^- \rightarrow \tau^+ \tau^-$, $\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_{\tau}$		

The extraction of the resonance in the τ decay should be the cleanest, but the determination of the pole is still unstable \rightarrow See A. Jackura's talk tomorrow

(Lattice simulations with stable ρ , Lang, Leskovec, Mohler, Prelovsek, JHEP 1404, 162)

$\pi p \rightarrow 3\pi p$ diffractive production

Deck amplitude

This production mechanism allows for a nonresonant contribution (Deck effect) Because of the light mass of the pion, the singularity is close to the physical region and generates a peaking background

$\pi_1(1600) \to \rho\pi \to \pi\pi\pi$

The strength of the Deck effect depends on the momentum transferred t, but the precise estimates rely on the model for the Deck amplitude

A strong signal is also observed in $\eta^{(\prime)}\pi$, consistent with the naive expectation for a hybrid meson

Having the $3\pi \rightarrow 3\pi$ scattering data from Lattice will allow for a coupled channel analysis unaffected by the Deck effect

$a_1(1420) \rightarrow f_0(980)\pi \rightarrow \pi\pi\pi$

COMPASS claimed the observation of another a_1 at a slightly higher mass

- Narrower than the $a_1(1260)$
- Unexpected in quark model or lattice spectra
- Only seen in $f_0(980)\pi$

$a_1(1420) \rightarrow f_0(980)\pi \rightarrow \pi\pi\pi$

It has been proposed that the peak is due to a triangle singularity i.e. a dynamical enhancement generated by rescattering

Mikhasenko, Ketzer, Sarantsev, PRD91, 094015

If that is the case, the strength of the signal would dramatically depend on the mass of the exchanges: studying the amplitude at different pion/kaon masses will confirm whether this is true

The heavy sector: XYZ states

Esposito, AP, Polosa, Phys.Rept. 668

X(3872)

- Discovered in $B \to K X \to K J/\psi \pi \pi$
- Quantum numbers 1⁺⁺
- Very close to DD* threshold
- Too narrow for an abovetreshold charmonium
- Isospin violation too big $\frac{\Gamma(X \to J/\psi \ \omega)}{\Gamma(X \to J/\psi \ \rho)} \sim 0.8 \pm 0.3$
- Mass prediction not compatible with $\chi_{c1}(2P)$

$$\begin{split} M &= 3871.68 \pm 0.17 \; \text{MeV} \\ M_X - M_{DD^*} &= -3 \pm 192 \; \text{keV} \\ \Gamma &< 1.2 \; \text{MeV} @ 90\% \end{split}$$

X(3872)

Large prompt production at hadron colliders $\sigma_B / \sigma_{TOT} = (26.3 \pm 2.3 \pm 1.6)\%$

 $\sigma_{PR} \times B(X \rightarrow J/\psi \pi \pi)$ = (1.06 ± 0.11 ± 0.15) nb

CMS, JHEP 1304, 154

B decay mode	X decay mode	product branchin		B_{fit}	R_{fit}
K^+X	$X \to \pi \pi J\!/\!\psi$	0.86 ± 0.08	$(BABAR, 26 Belle^{25})$	$0.081^{+0.019}_{-0.031}$	1
		$0.84 \pm 0.15 \pm 0.07$	BABAR ²⁶		
		$0.86 \pm 0.08 \pm 0.05$	Belle ²⁵		
$K^0 X$	$X \to \pi \pi J\!/\!\psi$	0.41 ± 0.11	$(BABAR, 26 Belle^{25})$		
		$0.35 \pm 0.19 \pm 0.04$	BABAR ²⁶		
		$0.43 \pm 0.12 \pm 0.04$	Belle ²⁵		
$(K^+\pi^-)_{NR}X$	$X ightarrow \pi \pi J/\psi$	$0.81 \pm 0.20^{+0.11}_{-0.14}$	Bellc ¹⁰⁶		
$K^{*0}X$	$X \to \pi \pi J / \psi$	< 0.34, 90% C.L.	Belle^{106}		
KX	$X ightarrow \omega J/\psi$	$R=0.8\pm0.3$	BABAR ³³	$0.061^{+0.024}_{-0.036}$	$0.77^{+0.28}_{-0.32}$
K^+X		$0.6\pm0.2\pm0.1$	BABAR ³³		
$K^0 X$		$0.6\pm0.3\pm0.1$	BABAR ³³		
KX	$\frac{X \to \pi \pi \pi^0 J/\psi}{X \to D^{*0} \bar{D}^0}$	$R=1.0\pm0.4\pm0.3$	Belle ³²		
K^+X	$X \to D^{*0} \bar{D}^0$	8.5 ± 2.6	$(BABAR, \frac{38}{38} Belle^{37})$	$0.614_{-0.074}^{+0.166}$	$8.2^{+2.3}_{-2.8}$
		$16.7\pm3.6\pm4.7$	BABAR ³⁸	01011	2.0
		$7.7 \pm 1.6 \pm 1.0$	Belle ³⁷		
$K^0 X$	$X \to D^{*0} \bar{D}^0$	$f 12\pm4$	$(BABAR, \frac{38}{38} Belle^{37})$		
		$22\pm10\pm4$	BABAR ³⁸		
		$9.7\pm4.6\pm1.3$	Belle ³⁷		
K^+X	$X \rightarrow \gamma J/\psi$	0.202 ± 0.038	$(BABAR, 35 Belle^{34})$	$0.019^{+0.005}_{-0.009}$	$0.24^{+0.05}_{-0.06}$
K^+X		$0.28 \pm 0.08 \pm 0.01$	BABAR ³⁵	01000	0100
		$0.178^{+0.048}_{-0.044} \pm 0.012$	$\operatorname{Bellc}^{34}$		
$K^0 X$		$0.26 \pm 0.18 \pm 0.02$	BABAR ³⁵		
		$0.124^{+0.076}_{-0.061} \pm 0.011$	Belle^{34}		
K^+X	$X \to \gamma \psi(2S)$	0.44 ± 0.12	BABAR ³⁵	$0.04^{+0.015}_{-0.020}$	$0.51^{+0.13}_{-0.17}$
K^+X		$0.95 \pm 0.27 \pm 0.06$	BABAR ³⁵	0.020	
		$0.083^{+0.198}_{-0.183} \pm 0.044$	Belle^{34}		
		$R' = 2.46 \pm 0.64 \pm 0.29$	LHCb ³⁶		
$K^0 X$		$1.14 \pm 0.55 \pm 0.10$	BABAR ³⁵		
		$0.112^{+0.357}_{-0.290} \pm 0.057$	Belle^{34}		
K^+X	$X \to \gamma \chi_{c1}$	$< 9.6 \times 10^{-3}$	Belle ²³	$< 1.0 \times 10^{-3}$	< 0.014
K^+X	$X \to \gamma \chi_{c2}$	< 0.016	Belle ²³	$< 1.7 \times 10^{-3}$	< 0.024
KX	$X \to \gamma \gamma$	$< 4.5 \times 10^{-3}$	Belle ¹¹¹	$< 4.7 \times 10^{-4}$	$< 6.6 \times 10^{-10}$
KX	$X \to \eta J/\psi$	< 1.05	BABAR ¹¹²	< 0.11	< 1.55
K^+X	$X \to p\bar{p}$	$< 9.6 \times 10^{-4}$	LHCb ¹¹⁰	$< 1.6 \times 10^{-4}$	$< 2.2 \times 10^{-10}$

X(3872) on the lattice

Prelovsek, Leskovec, PRL111, 192001

- Three body dynamics $D\overline{D}\pi$ may play a role. Playing with lighter charm mass?
- A full amplitude analysis is missing, and is now mandatory

Vector Y states

Y(4260)

BESIII, PRL118, 092002 (2017)

21

 $e^+e^- \rightarrow J/\psi \pi \pi$ BESIII, PRL118, 092001 (2017) 100 B€SⅢ XYZ o^{dress}(e⁺e⁻→π⁺π⁻J/ψ) (pb) Fit I 80 Fit II BABAR 60 Belle 40 20 0 3.8 4.2 4 4.4 4.6 E_{cm} (GeV)

New BESIII data show a peculiar lineshape for the Y(4260), and suggest a state narrower and lighter than in the past

The state is mature for a coupled channel analysis (on the lattice?)

Charged *Z* states: $Z_c(3900), Z'_c(4020)$

In the Dalitz plot projections, two states appear slightly above $D^{(*)}D^*$ thresholds

$$\begin{array}{l} e^+e^- \to Z_c(3900)^+\pi^- \to J/\psi \ \pi^+\pi^- \ \text{and} \to (DD^*)^+\pi^- \\ M = 3888.7 \pm 3.4 \ \text{MeV}, \ \Gamma = 35 \pm 7 \ \text{MeV} \\ e^+e^- \to Z_c'(4020)^+\pi^- \to h_c \ \pi^+\pi^- \ \text{and} \to \overline{D}^{*0}D^{*+}\pi^- \\ M = 4023.9 \pm 2.4 \ \text{MeV}, \ \Gamma = 10 \pm 6 \ \text{MeV} \end{array}$$

Charged *Z* states: $Z_b(10610), Z'_b(10650)$

Z_c s on the lattice

- The number of energy levels we find is equal to the number of expected non-interacting meson-mesons.
- Finite-volume spectrum lies close to non-interacting meson-meson levels suggesting there are weak meson-meson interactions.
- There is no strong indication for a bound state or narrow resonance in this channel. Z_C(3900)?
- Tetraquark operators do not have a significant effect on calculating the spectrum.

No calculations have found evidence for a resonance Prelovsek, Leskovec, PLB727, 172-176 HALQCD, PRL117, 242001 HadSpec, JHEP 1711, 033

Amplitude analysis for $Z_c(3900)$

One can test different parametrizations of the amplitude, which correspond to different singularities \rightarrow different natures AP *et al.* (JPAC), PLB772, 200

$$f_{i}(s,t,u) = 16\pi \sum_{l=0}^{L_{\text{max}}} (2l+1) \left(a_{l,i}^{(s)}(s)P_{l}(z_{s}) + a_{l,i}^{(t)}(t)P_{l}(z_{t}) + a_{l,i}^{(u)}(u)P_{l}(z_{u}) \right) \quad \text{Khuri-Treiman}$$

$$f_{0,i}(s) = \frac{1}{32\pi} \int_{-1}^{1} dz_{s} f_{i}(s,t(s,z_{s}),u(s,z_{s})) = a_{0,i}^{(s)} + \frac{1}{32\pi} \int_{-1}^{1} dz_{s} \left(a_{0,i}^{(t)}(t) + a_{0,i}^{(u)}(u) \right) \equiv a_{0,i}^{(s)} + b_{0,i}(s)$$

$$f_{l,i}(s) = \frac{1}{32\pi} \int_{-1}^{1} dz_{s} P_{l}(z_{s}) \left(a_{0,i}^{(t)}(t) + a_{0,i}^{(u)}(u) \right) \equiv b_{l,i}(s) \quad \text{for } l > 0. \quad f_{0,i}(s) = b_{0,i}(s) + \sum_{j} t_{ij}(s) \frac{1}{\pi} \int_{s_{j}}^{\infty} ds' \frac{\rho_{j}(s')b_{0,j}(s')}{s' - s},$$

$$f_{i}(s,t,u) = 16\pi \left[a_{0,i}^{(t)}(t) + a_{0,i}^{(u)}(u) + \sum_{j} t_{ij}(s) \left(c_{j} + \frac{s}{\pi} \int_{s_{j}}^{\infty} ds' \frac{\rho_{j}(s')b_{0,j}(s')}{s' - s} \right) \right],$$

Fit: III

Fit: III+tr.

Fit: IV+tr.

Fit: tr.

Fit summary

Data can hardly distinguish these scenarios.

Lattice QCD can actually provide the scattering matrix as an input to this analysis

More complicated Dalitz plots

BESIII, PRD96, 032004

In the reaction $e^+e^- \rightarrow \psi' \pi^+ \pi^-$, the situation looks even more obscure

Data refused to be fitted with any simple model

More complicated Dalitz plots

Outlook

- The light sector: the 3π system
 - The $a_1(1260)$
 - The hybrid π_1
 - The $a_1(1420)$
- The heavy sector: XYZ
 - The X(3872) and the Y states
 - Two-body subchannels: Z_cs and Z_bs
 - Complicated Dalitz plots

Lattice can disentangle the scattering from the production mechanism Three body dynamics AND coupled channels

Lattice can provide the $2 \rightarrow 2$ scattering amplitude that can be used as input in the phenomenological models

BACKUP

Pole extraction

Pentaquarks!

LHCb, PRL 115, 072001 LHCb, PRL 117, 082003 Two states seen in $\Lambda_b \rightarrow (J/\psi p) K^-$, evidence in $\Lambda_b \rightarrow (J/\psi p) \pi^ M_1 = 4380 \pm 8 \pm 29 \text{ MeV}$ $\Gamma_1 = 205 \pm 18 \pm 86 \text{ MeV}$ $M_2 = 4449.8 \pm 1.7 \pm 2.5 \text{ MeV}$ $\Gamma_2 = 39 \pm 5 \pm 19 \text{ MeV}$

Quantum numbers $J^{P} = \begin{pmatrix} 3^{-}, 5^{+} \\ \frac{3}{2}, \frac{5^{+}}{2} \end{pmatrix} \text{ or } \begin{pmatrix} 3^{+}, 5^{-} \\ \frac{3}{2}, \frac{5^{+}}{2} \end{pmatrix} \text{ or } \begin{pmatrix} 5^{+}, 3^{-} \\ \frac{5^{+}, 3^{-}}{2} \end{pmatrix}$ Opposite parities needed for the interference to correctly describe angular distributions, low mass region contaminated by Λ^{*} (model dependence?)

No obvious threshold nearby

Pentaquarks!

LHCb, PRL 115, 072001 LHCb, PRL 117, 082003 Two states seen in $\Lambda_b \rightarrow (J/\psi p) K^-$,

evidence in $\Lambda_b \rightarrow (J/\psi p) \pi^ M_1 = 4380 \pm 8 \pm 29 \text{ MeV}$ $\Gamma_1 = 205 \pm 18 \pm 86 \text{ MeV}$ $M_2 = 4449.8 \pm 1.7 \pm 2.5 \text{ MeV}$ $\Gamma_2 = 39 \pm 5 \pm 19 \text{ MeV}$

Quantum numbers $J^{P} = \begin{pmatrix} 3^{-}, 5^{+} \\ \frac{3}{2}, \frac{5^{+}}{2} \end{pmatrix} \text{ or } \begin{pmatrix} 3^{+}, 5^{-} \\ \frac{3}{2}, \frac{5^{+}}{2} \end{pmatrix} \text{ or } \begin{pmatrix} 5^{+}, 3^{-} \\ \frac{5^{+}, 3^{-}}{2} \end{pmatrix}$ Opposite parities needed for the interference to correctly describe angular

distributions, low mass region contaminated by Λ^* (model dependence?)

No obvious threshold nearby

Much narrower than LHCb! Look for prompt!

 $+ 2 m_{[cs]} = M$

Other beasts

One/two peaks seen in $B \rightarrow XK \rightarrow J/\psi \phi K$, close to threshold

X(3915), seen in $B \rightarrow X K \rightarrow J/\psi \omega$ and $\gamma \gamma \rightarrow X \rightarrow J/\psi \omega$ $J^{PC} = 0^{++}$, candidate for $\chi_{c0}(2P)$ But X(3915) $\not\rightarrow D\overline{D}$ as expected, and the hyperfine splitting M(2⁺⁺) - M(0⁺⁺) too small

P_c photoproduction

To exclude any rescattering mechanism, we propose to search the $P_c(4450)$ state in photoproduction.

 $\langle \lambda_{\psi} \lambda_{p'} | T_r | \lambda_{\gamma} \lambda_p \rangle = \frac{\langle \lambda_{\psi} \lambda_{p'} | T_{\text{dec}} | \lambda_R \rangle}{M_r^2 - W^2 - \mathrm{i}\Gamma_r M_r} \frac{\langle \lambda_R | T_{\text{em}}^{\dagger} | \lambda_{\gamma} \lambda_p \rangle}{M_r^2 - W^2 - \mathrm{i}\Gamma_r M_r}$

Hadronic part

- 3 independent helicity couplings,
 - \rightarrow approx. equal, $g_{\lambda_{\psi},\lambda_{p'}} \sim g$
- g extracted from total width and (unknown) branching ratio

Vector meson dominance relates the radiative width to the hadronic width

$$\Gamma_{\gamma} = 4\pi\alpha \,\Gamma_{\psi p} \left(\frac{f_{\psi}}{M_{\psi}}\right)^2 \left(\frac{\bar{p}_i}{\bar{p}_f}\right)^{2\ell+1} \times \frac{4}{6}$$

Hiller Blin, AP et al. (JPAC), PRD94, 034002

Dictionary – Quark model

- L = orbital angular momentum S = spin $q + \overline{q}$
- J = total angular momentum = exp. measured spin

I = isospin = 0 for quarkonia

 $L - S \le J \le L + S$ $P = (-1)^{L+1}, C = (-1)^{L+S}$ $G = (-1)^{L+S+I}$

J^{PC}	L	S	Charmonium $(c\bar{c})$	Bottomonium $(b\bar{b})$
0-+	0 (S-wave)	0	$\eta_c(nS)$	$\eta_b(nS)$
1		1	$\psi(nS)$	$\Upsilon(nS)$
1^{+-}		0	$h_c(nP)$	$h_b(nP)$
0^{++}	1 (P-wave)	1	$\chi_{c0}(nP)$	$\chi_{b0}(nP)$
1^{++}	1 (I - wave)	1	$\chi_{c1}(nP)$	$\chi_{b1}(nP)$
2^{++}		1	$\chi_{c2}(nP)$	$\chi_{b2}(nP)$

But
$$J/\psi = \psi(1S), \ \psi' = \psi(2S)$$

Candidates / (0.2 GeV²) 000 000 Candidates / (0.02 GeV^2) 1 01 $_{c0}$ $m^2_{\psi'\pi^-} [GeV^2]$ 20 16 18 1.5 0.5 $\begin{array}{l} Z(4430)^+ \to \psi(2S) \; \pi^+ \\ I^G I^{PC} = 1^+ 1^{+-} \end{array}$ LHCD ₹ 5^{0.2} If the amplitude is a free $M = 4475 \pm 7^{+15}_{-25} \text{ MeV}$ -0.2 $\Gamma = 172 \pm 13^{+37}_{-34}$ MeV

-0.4

-0.6 -0.6

-0.4

-0.2

0

Charged Z states: Z(4430)

HCh

Far from open charm thresholds

complex number, in each bin of $m_{\psi'\pi^-}^2$, the resonant behaviour appears as well

 $\operatorname{Re}^{0.2} A^{Z^-}$

 $\frac{2}{m_{K^+\pi^-}^2} \frac{2.5}{[GeV^2]}$

$Y(4260) \rightarrow \overline{D}D_1?$ e⁺e⁻ \rightarrow Y(4260) $\rightarrow \pi^- \overline{D}^0 D^{*+}$

Flavored *X*(5568)

- A flavored state seen in $B_s^0 \pi$ invariant mass by D0 (both $B_s^0 \rightarrow J/\psi \phi$ and $\rightarrow D_s \mu \nu$),
- not confermed by LHCb or CMS
- (different kinematics? Compare differential distributions)

Controversy to be solved

S-Matrix principles

 $A(s,t) = \sum_{l} A_{l}(s)P_{l}(z_{s})$ **Analyticity** $A_{l}(s) = \lim_{\epsilon \to 0} A_{l}(s+i\epsilon)$

These are constraints the amplitudes have to satisfy, but do not fix the dynamics

Resonances (QCD states) are poles in the unphysical Riemann sheets

Example: The charged $Z_c(3900)$

A charged charmonium-like resonance has been claimed by BESIII in 2013.

 $e^+e^- \to Z_c(3900)^+\pi^- \to J/\psi \pi^+\pi^- \text{ and } \to (DD^*)^+\pi^ M = 3888.7 \pm 3.4$ MeV, $\Gamma = 35 \pm 7$ MeV 5.8 5. M²(D*⁻π⁺) 4.8 4.6 15.5 15 16.5 16 $M^{2}(D^{0}D^{*})$

Such a state would require a minimal 4q content and would be manifestly exotic

$$f_{i}(s,t,u) = 16\pi \sum_{l=0}^{L_{\text{max}}} (2l+1) \left(a_{l,i}^{(s)}(s)P_{l}(z_{s}) + a_{l,i}^{(t)}(t)P_{l}(z_{t}) + a_{l,i}^{(u)}(u)P_{l}(z_{u}) \right) \quad \text{Khuri-Treiman}$$

$$f_{0,i}(s) = \frac{1}{32\pi} \int_{-1}^{1} dz_{s} f_{i}(s,t(s,z_{s}),u(s,z_{s})) = a_{0,i}^{(s)} + \frac{1}{32\pi} \int_{-1}^{1} dz_{s} \left(a_{0,i}^{(t)}(t) + a_{0,i}^{(u)}(u) \right) \equiv a_{0,i}^{(s)} + b_{0,i}(s)$$

$$f_{l,i}(s) = \frac{1}{32\pi} \int_{-1}^{1} dz_{s} P_{l}(z_{s}) \left(a_{0,i}^{(t)}(t) + a_{0,i}^{(u)}(u) \right) \equiv b_{l,i}(s) \quad \text{for } l > 0. \quad f_{0,i}(s) = b_{0,i}(s) + \sum_{j} t_{ij}(s) \frac{1}{\pi} \int_{s_{j}}^{\infty} ds' \frac{\rho_{j}(s')b_{0,j}(s')}{s' - s},$$

$$f_{i}(s,t,u) = 16\pi \left[a_{0,i}^{(t)}(t) + a_{0,i}^{(u)}(u) + \sum_{j} t_{ij}(s) \left(c_{j} + \frac{s}{\pi} \int_{s_{j}}^{\infty} ds' \frac{\rho_{j}(s')b_{0,j}(s')}{s' (s' - s)} \right) \right],$$

Triangle singularity

Logarithmic branch points due to exchanges in the cross channels can simulate a resonant behavior, only in very special kinematical conditions (Coleman and Norton, Nuovo Cim. 38, 438), However, this effects cancels in Dalitz projections, no peaks (Schmid, Phys.Rev. 154, 1363)

$$f_{0,i}(s) = b_{0,i}(s) + \frac{t_{ij}}{\pi} \int_{s_i}^{\infty} ds' \frac{\rho_j(s')b_{0,j}(s')}{s'-s}$$

...but the cancellation can be spread in different channels, you might still see peaks in other channels only! Szczepaniak, PLB747, 410-416 Szczepaniak, PLB757, 61-64 Guo, Meissner, Wang, Yang PRD92, 071502

Testing scenarios

 We approximate all the particles to be scalar – this affects the value of couplings, which are not normalized anyway – but not the position of singularities. This also limits the number of free parameters

$$f_i(s,t,u) = 16\pi \left[a_{0,i}^{(t)}(t) + a_{0,i}^{(u)}(u) + \sum_j t_{ij}(s) \left(c_j + \frac{s}{\pi} \int_{s_j}^{\infty} ds' \frac{\rho_j(s')b_{0,j}(s')}{s'(s'-s)} \right) \right],$$

The scattering matrix is parametrized as $(t^{-1})_{ij} = K_{ij} - i \rho_i \delta_{ij}$ Four different scenarios considered:

- «III»: the K matrix is $\frac{g_i g_j}{M^2 s}$, this generates a pole in the closest unphysical sheet the rescattering integral is set to zero
- «III+tr.»: same, but with the correct value of the rescattering integral
- «IV+tr.»: the K matrix is constant, this generates a pole in the IV sheet
- «tr.»: same, but the pole is pushed far away by adding a penalty in the χ^2

Singularities and lineshapes

Different lineshapes according to different singularities

State	M (MeV)	Γ (MeV)	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	State	M (MeV)	Γ (MeV)	J^{PC}	Process (mode)	Experiment $(\#\sigma)$
X(3823)	3823.1 ± 1.9	< 24	??-	$B \to K(\chi_{c1}\gamma)$	$\operatorname{Belle}^{23}(4.0)$	Y(4220)	4196^{+35}_{-30}	39 ± 32	1	$e^+e^- \rightarrow (\pi^+\pi^-h_c)$	BES III data $\frac{63,64}{(4.5)}$
X(3872)	3871.68 ± 0.17	< 1.2	1^{++}	$B \to K(\pi^+\pi^- J\!/\!\psi)$	Belle ^{24,25} (>10), BABAR ²⁶ (8.6)	Y(4230)	4230 ± 8	38 ± 12	1	$e^+e^- \to (\chi_{c0}\omega)$	BES III 65 (>9)
				$p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) \dots$	$CDF^{27,28}(11.6), D0^{29}(5.2)$	$Z(4250)^+$	4248_{-45}^{+185}	177^{+321}_{-72}	$?^{?+}$	$\bar{B}^0 \rightarrow K^-(\pi^+\chi_{c1})$	$\text{Belle}^{54}(5.0), BABAR^{55}(2.0)$
				$pp \rightarrow (\pi^+\pi^- J/\psi) \dots$	LHCb ^{30,31} (np)	Y(4260)	4250 ± 9	108 ± 12	1	$e^+e^- \rightarrow (\pi\pi J/\psi)$	BABAR ^{66,67} (8), CLEC ^{68,69} (11)
				$B \to K(\pi^+\pi^-\pi^0 J/\psi)$	Belle ³² (4.3), $BABAR^{33}$ (4.0)						Belle ^{41,53} (15), BES III ⁴⁰ (np)
				$B \to K(\gamma J/\psi)$	Belle ³⁴ (5.5), $BABAR^{35}$ (3.5)					$e^+e^- \to (f_0(980)J/\psi)$	BABAR ⁶⁷ (np), Belle ⁴¹ (np)
					$LHCb^{36}$ (> 10)					$e^+e^- \to (\pi^- Z_c(3900)^+)$	BES III (40) (8), Belle (41) (5.2)
				$B \to K(\gamma\psi(2S))$	$BABAR^{\overline{35}}(3.6), Belle^{\overline{34}}(0.2)$					$e^+e^- \rightarrow (\gamma X(3872))$	BES III <mark>70</mark> (5.3)
					$LHCb^{\underline{36}}(4.4)$	Y(4290)	4293 ± 9	222 ± 67	1	$e^+e^- \rightarrow (\pi^+\pi^-h_c)$	BES III data ^{63,64} (np)
- (. 1	$B \to K(D\bar{D}^*)$	Belle ³⁷ (6.4), $BABAR^{38}$ (4.9)	X(4350)	$4350.6^{+4.6}_{-5.1}$	13^{+18}_{-10}	$0/2^{?+}$	$e^+e^- \rightarrow e^+e^-(\phi J/\psi)$	Belle ⁵⁸ (3.2)
$Z_c(3900)^+$	3888.7 ± 3.4	35 ± 7	1+-	$Y(4260) \to \pi^- (D\bar{D}^*)^+$	BES III ³⁹ (np)	Y(4360)	4354 ± 11	78 ± 16	1	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle ⁷¹ (8), $BABAR^{72}(np)$
				$Y(4260) \to \pi^-(\pi^+ J/\psi)$	BES III ⁴⁰ (8), Belle ⁴¹ (5.2)	$Z(4430)^+$	4478 ± 17	180 ± 31	1+-	$\bar{B}^0 \to K^-(\pi^+\psi(2S))$	Belle ^{73,74} (6.4), BABAR ⁷⁵ (2.4)
7 (1000)+	1000.0 0.1	10 0	1+-	V(1000) = -(+1)	CLEO data $\frac{42}{(>5)}$	B (1100)		100 ± 01	-	2 (LHCb ⁷⁶ (13.9)
$Z_c(4020)^+$	4023.9 ± 2.4	10 ± 6	1+-	$Y(4260) \to \pi^-(\pi^+ h_c)$ $Y(4260) \to \pi^-(D^* \bar{D}^*)^+$	BES III ⁴³ (8.9) BES III ⁴⁴ (10)					$\bar{B}^0 \to K^-(\pi^+ J/\psi)$	$Belle^{62}(4.0)$
V(2015)	3918.4 ± 1.9	20 ± 5	0^{++}	$Y(4260) \to \pi^- (D^* \bar{D}^*)^+$ $B \to K(\omega J/\psi)$	BES $\Pi^{45}(10)$ Belle ⁴⁵ (8), BABAR ^{33,46} (19)	Y(4630)	4634_{-11}^{+9}	92^{+41}_{-32}	1	$e^+e^- \to (\Lambda_c^+ \bar{\Lambda}_c^-)$	Belle ⁷⁷ (8.2)
Y(3915)	5916.4 ± 1.9	20 ± 5	0	$B \to K(\omega J/\psi)$ $e^+e^- \to e^+e^-(\omega J/\psi)$	Belle ⁴⁷ (7.7), $BABAR^{48}$ (7.6)	Y(4660)	4665 ± 10	52_{-32} 53 ± 14	1	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle ⁷¹ (5.8), $BABAR^{72}$ (5)
Z(3930)	3927.2 ± 2.6	24 ± 6	2^{++}	$e^+e^- \rightarrow e^+e^-(D\bar{D})$	Belle ⁴⁹ (5.3), BABAR ⁵⁰ (5.8)	$\frac{1}{Z_b(10610)^+}$	10607.2 ± 2.0	18.4 ± 2.4	1+-	$\frac{\chi(5S) \to \pi(\pi\Upsilon(nS))}{\Upsilon(5S) \to \pi(\pi\Upsilon(nS))}$	Belle ^{78,79} (>10)
X(3940)	3927.2 ± 2.0 3942^{+9}_{-8}	37^{+27}_{-17}	2?+	$e^+e^- \rightarrow J/\psi \ (D\bar{D}^*)$	Belle (5.5) , DADA((5.8)) Belle $(51,52)$ (6)	26(10010)	10007.2 ± 2.0	10.4 ± 2.4	1	$\Upsilon(5S) \to \pi^-(\pi^+ h_b(nP))$	$\frac{16}{8}$
Y(4008)	33942_{-8} 3891 ± 42	$\frac{57-17}{255 \pm 42}$	1	$e^+e^- \rightarrow (\pi^+\pi^- J/\psi)$	Belle ^{41,53} (7.4)					$\Upsilon(5S) \to \pi^- (B\bar{B}^*)^+$	$\frac{\text{Bell}e^{80}}{80}(8)$
$Z(4050)^+$	4051^{+24}_{-43}	82^{+51}_{-55}	1 ??+	$\bar{B}^0 \to K^-(\pi^+\chi_{c1})$	Belle ⁵⁴ (5.0), BABAR ⁵⁵ (1.1)	7 (10650)+	10659 9 1 K	11.5 ± 2.2	1+-	. , . ,	$\operatorname{Bell}_{\overline{78}}^{\overline{78}}(>10)$
Y(4140)	4001_{-43} 4145.6 ± 3.6	$\frac{62-55}{14.3\pm5.9}$??+	$B^+ \to K^+(\phi J/\psi)$	$CDF^{56,57}(5.0), Belle^{58}(1.9),$	$Z_b(10650)^+$	10652.2 ± 1.5	11.0 ± 2.2	1'	$\Upsilon(5S) \to \pi^-(\pi^+\Upsilon(nS))$. ,
1 (1110)	1140.0 ± 0.0	14.0 ± 0.0	•	$D = / \Pi (\psi S / \psi)$	LHC $b^{59}(1.4)$, CMS $^{60}(>5)$					$\Upsilon(5S) \to \pi^-(\pi^+ h_b(nP))$	$\operatorname{Belle}_{\overline{78}}(16)$
					$D \varnothing^{61}(3.1)$					$\Upsilon(5S) \to \pi^- (B^* \bar{B}^*)^+$	$\operatorname{Belle}^{\underline{80}}(6.8)$
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	??+	$e^+e^- \rightarrow J/\psi \; (D^*\bar{D}^*)$	$\operatorname{Belle}^{52}(5.5)$						
$Z(4200)^+$	4196^{+35}_{-30}	370^{+99}_{-110}	1 ⁺⁻	$\bar{B}^0 \to K^-(\pi^+ J/\psi)$	$\operatorname{Bell}^{62}(7.2)$						
	-30	-110		X 117	\ /			JUPT	iori	AP Piccinini	Polosa

Guerrieri, AP, Piccinini, Polosa, IJMPA 30, 1530002