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Motivation π and K interactions are interesting 

QCD Goldstone Bosons. Test chiral symmetry breaking 

Lightest non-strange and strange resonances seen there.

Particularly scalar mesons

Final products in almost all hadronic interactions

Their re-scattering is essential in many hadronic processes



Motivation ππ and πK SCATTERING data are poor

π and K are unstable. Still, beams can be made.

But NOT luminous enough for ππ and πK collisions: Indirect measurements

 



NN

Chew-Low Extrapolation (see Gribov’s book Sect. 2.6.2)

Initial state not well defined, model dependent off-shell extrapolations
(OPE, absorption, A2 exchange...).
Needs Meson- N-partial wave extraction.  Problems with phase shift ambiguities, etc...

As a consequence… VERY LARGE SYSTEMATIC UNCERTAINTIES

1) From meson-Nucleon scattering



 scattering data. Example:  CERN Munich Experiment

SYSTEMATIC uncertainties larger than STATISTICAL

5 different 

analysis of same 

pn data !!

Systematic errors of 10o !!



Motivation

This talk:    show how useful DISPERSION RELATIONS 

and ANALYTICITY can be

First problem:

CONFLICTING DATA SETS

From meson- Nucleon

π π → π π

ππ and πK SCATTERING data are often in conflict



Motivation ππ and πK SCATTERING data are bad

π and K are unstable. Still, beams can be made.

But NOT luminous enough for ππ and πK collisions: Indirect measurements

2) The only good data :From Ke (“Kl4 decays”)

Pions on-shell.

Very precise

Geneva-Saclay (77),  E865 (01), NA48/2 (2010) 

BUT Limited: 

only  ππ→ππ

only 00-11. 

only E<MK



Motivation: Resonances in meson-meson scattering

Usually, they are described by Breit-Wigner shapes

Which in the elastic case produce a typical phase shift rapid increase 

from 0 to 180 degrees that we have already found several times 

ρ(770)

f2(1275) K*(892)

These are easily identified…

~
𝑀 Γ(𝑠)

𝑀2 − 𝑠 − 𝑖𝑀 Γ(𝑠)



Motivation: Resonances in meson-meson scattering

Breit-Wigner shapes are easily recognizable…

But do you see resonances there?

Nevertheless there is a resonance (a pole) on each graph: 

the σ/f0(500) and the κ/K0*(800) light scalars



Motivation: The f0(500) or σ, half a century around

I=0, J=0  exchange very important for nucleon-nucleon attraction!!

Crude Sketch of NN potential:

From C.N. Booth

Scalar-isoscalar field already proposed by Johnson & Teller in 1955

Name given by Schwinger in 1957. Multiplet of isospin.

Soon interpreted within “Linear sigma model” (Gell-Mann) or Nambu 

Jona Lasinio - like models, in the 60’s. 



Motivation: Light scalars

Glueballs: Feature of non-abelian QCD nature

The lightest one expected with these quantum numbers

If κ exists σ almost discarded as glueball (also by lattice)

Why lesser role in the saturation of ChPT parameters?

The f0’s have the vacuum quantum numbers.

Relevant for spontaneous chiral symmetry breaking.

SU(3) classification. How many multiplets? Inverted hierarchy?

If too many states one might be glueball

Non ordinary mesons? Tetraquarks, molecules, mixing…

First of all it is relevant to settle their existence, mass and width

Since the 60’s-70’s many MODELS in conflict



Resonances as poles

The universal features of resonances are their 

pole positions and residues *

𝑠𝑝𝑜𝑙𝑒 ≈M-i Γ/2

*in the Riemann sheet obtained from an analytic continuation through the physical cut

The Breit-Wigner shape is just an approximation for narrow and isolated resonances 

s-plane
Im s

Re s



Resonances as poles

Example: 

the ρ(770)

ρ(770) It is a paradigmatic 

example of a 

relatively narrow and 

isolated resonance in 

an elastic channel
But things are 

not always 

that simple…



Example: Poles from

same experiment!!

σ PDG uncertainties ca. 2010

Actually, the use of naive theoretical tools also adds to the confusion

(Breit-Wigners, Isobars, K-matrices…)



 LATTICE, similar but much smaller problem

 Analytic continuation slightly model dependent. Maybe Roy-like eqs could help.



What is a dispersion relation.?    Brief example for π π

CAUSALITY: 

Amplitudes T(s,t) are ANALYTIC in 

complex s plane but for cuts for thresholds.

Crossing implies left cut from u-channel threshold

Cauchy Theorem determines T(s,t) at ANY s, 

from an INTEGRAL on the contour

Good for: 1) Calculating T(s,t) where there is not data

2) Constraining data analysis

3) ONLY MODEL INDEPENDENT extrapolation to complex s-plane

without extra assumptions

If T->0 fast enough at high s, curved part vanishes

Otherwise, determined up to polynomial

(subtractions)

Left cut usually a problem

𝑇 𝑠, 𝑡 =  
𝑡ℎ

∞ 𝐼𝑚 𝑇(𝑠′, 𝑡)

𝑠 − 𝑠′
𝑑𝑠′ + 𝐿𝐶

We can calculate t(s) 

anywhere we want using 

the same integral expression



Roy Eqs. vs. Forward Dispersion Relations

So,  we need to get rid of ONE VARIABLE 

to write CAUCHY THEOREM in terms of the other one

1) Fix one variable in terms of the other 

(fixed-t, hyperbolic relations…)

2) Integrate one variable and keep the other 

(partial wave dispersión relations)



Single variable Dispersion Relations (DR)

1) Fixed-t Dispersion Relations (or fixed-s)  for T(s,t0)

Simple analytic structure in s-plane, simple derivation and use 

Left cut: With crossing may be rewritten in terms of physical region

One equation per amplitude. 

High Energy part very well known since Forward Amplitude~ Total cross section

Positivity in the integrand contributions, good for precision.

Calculated up to 1400 MeV (ππ) or 1.7 GeV (πK)

Not practical for unphysical sheets

Most popular: t0=0, FORWARD DISPERSION RELATIONS (FDRs).
(Kaminski, Pelaez , Yndurain, Garcia Martin, Ruiz de Elvira, Rodas )



Forward dispersion relations for π π.

Complete isospin set of 3 forward dispersion relations for : 

Two s-u symmetric amplitudes. F0+ 0+0+, F00 
00 00

ONE SUBTRACTION

Only depend on two isospin states. Positivity of imaginary part
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At threshold is the Olsson sum rule



Single variable Dispersion Relations (DR)

Partial-wave Dispersion Relations

Analytic structure complicated if unequal masses (Circular cuts)

Left cut: With crossing may be rewritten in terms of physical region. 

But then different partial waves coupled. 

In practice, limited to a finite energy. 

But good and simple for elastic resonance poles



Due to elastic unitarity: 

𝑆𝐼𝐼(𝑠) =
1

𝑆𝐼(𝑠)

The second sheet is then:

𝒕𝑰𝑰(𝒔) =
𝒕𝑰(𝒔)

𝟏 + 𝟐𝒊𝝈 𝒕𝑰(𝒔)

Recalling S 𝑠 = 1 + 2𝑖𝜎 𝑡 𝑠 , 𝜎 𝑠 =
𝑘

2 𝑠

For elastic partial waves the second Riemann sheet is easy to obtain.

The second Riemann sheet in the elastic case

Looking for resonance poles

is nothing but looking for a zero in that denominator

on the first Riemann sheet accesible with the pw DR



The real improvement: Analyticity (and Effective Lagrangians)

Unitarized ChPT 90’s Truong, Dobado, Herrero, JRP, Oset, Oller, Ruiz Arriola, Nieves, Meissner,…

Uses Chiral Perturbation Theory amplitudes inside dispersion relation.

Relatively simple, although different levels of rigour.  Generates all scalars

Crossing (left cut) approximated… , not so good for precisión but good for connecting with QCD

Roy-like equations.  70’s Roy, Basdevant, Pennington, Petersen…

00’s Ananthanarayan, Caprini, Colangelo, Gasser, Leutwyler, Moussallam, Decotes Genon, Lesniak, Kaminski, JRP…

Left cut implemented with precision . Use data on all waves + high energy . 

Optional: ChPT predictions for subtraction constants

The most precise and model independent pole determinations

f0(500) and K0*(800) existence, 

mass and width

firmly established with precision



σ

ρ

5002

σ ρ

Left cut due to 

Crossed channels

in scattering, not in

production

left cut and 

subthreshold region 

very close 

Threshold very close. Chiral behavior very relevant.Adler zero 

Very deep

Re s ~ Im s

Why so much worries about low energy and CORRECT ANALYTIC STRUCTURE?

It is somewhat misleading to think of analyticity in terms of 𝑠

Since the partial wave is analytic in s ….

500

For the σ and κ a good control of the left cut and threshold region is important.

This is why Roy-like equations are so relevant for precise pole determinations.



Roy-like Eqs. Derivation sketch

2) Write fixed-t dispersion relations and project them in partial waves. 

Limited to s≤ 68 mπ
2 ~ O(1.1) GeV (More complicated extensions exist)

3) Use 𝑠 ↔ 𝑢 crossing symmetry to re-write:

• left cut in terms of partial wave expansions of the other channels. 

But crossed channels are also ππ→ππ. Coupled equations.

• Subtraction terms

1) Choose the number of subtractions (2=Roy, 1=GKPY)

Complications for πK→πK (Roy-Steiner Eqs). Also for πN and γγ→ππ)

2) Different masses. Better use “hyperbolic” Dispersion Relations for larger 

applicability domain.

3) Crossing involves other processes (ππ→KK). More equations coupled.

4) Truncate for low energy and low pw. The rest is input (driving terms)
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Structure of Roy vs. GKPY Eqs.

Both are coupled channel equations for the infinite partial waves:

I=isospin 0,1,2 , l =angular momentum 0,1,2….

Partial wave

on

real axis

SUBTRACTION

TERMS

(polynomials)

2nd order 

1st order 

More energy suppressed

Less energy suppressed

Very small

small

ROY:

GKPY:

DRIVING 

TERMS

(truncation)

Higher waves

and High energy

“IN (from our data parametrizations)”“OUT” =?

KERNEL TERMS

known



Two strategies

SOLVE equations: (Ananthanarayan, Colangelo, Gasser, Leutwyler, Caprini, Moussallam, Stern…)

S and P wave solution for Roy or GKPY equations unique at low energy    if high-

energy, higher waves and scattering lengths known. (in isospin limit)

NO scattering DATA used at low energies ( 𝑠 ≤ 0.8 ~1 𝐺𝑒𝑉)

Good if interested in low energy scattering and do not trust data.

Uses ChPT input for threshold parameters

Impose Dispersion Relations on fits to data. (García-Martín, Kaminski,JRP, Ruiz de Elvira, Ynduráin)

Use any functional form and fit to DATA imposing DR within uncertainties.

Also needs input on other waves and high energy.

(But you can use physical inspiration for clever choices of parameterizations)

I guess this is 

NOT what you 

would like to 

do with your 

lattice data



Our series of works: 2005-2011

Independent and simple fits 

to data in different channels.

“Unconstrained Data Fits=UDF”

R. Kaminski, JRP, F.J. Ynduráin Eur.Phys.J.A31:479-484,2007. PRD74:014001,2006

JRP ,F.J. Ynduráin. PRD71, 074016 (2005) , PRD69,114001 (2004), 

R. García Martín, R. Kaminski, JRP, J. Ruiz de Elvira, F.J. Ynduráin, Phys.Rev. D83 (2011) 074004, 

R. García Martín, R. Kaminski, JRP, J. Ruiz de Elvira ,Phys.Rev.Lett. 107 (2011) 072001



Simple UNconstrained Fits to Data: P wave, IJ=11

Simple fits easy to write down for phase shifts and inelasticities

For P,S2,D0,D2,anf F waves



UNconstrained Fits for High energies

JRP, F.J.Ynduráin. PRD69,114001 (2004)Regge parametrizations of data

Factorization

For simplicity we use

To be discussed later…



The complicated wave is the S0 wave (IJ=00)

Average data

Fit individual sets

We have already seen the data is a mess…. Only Kl4 reliable

Always include Kl4, but two possibilities:



The S0 wave. Different sets

Fits to different sets including also Kl4 data

Note size of

uncertainty

in data

at 800 MeV!!



S0 wave: UNconstrained fit to data (UFD).  

Global fit, averaging all sets where they roughly coincide



S0 wave: DIP vs NO DIP inelasticity scenarios

Longstanding controversy for inelasticity : (Pennington, Bugg, Zou, Achasov….)

There are inconsistent data sets for the inelasticity above 1 GeV 

near the f0(980) region 

... whereas others do notSome prefer a “dip” structure…



Our series of works: 2005-2011

Independent and simple fits 

to data in different channels.

“Unconstrained Data Fits=UDF”

Check Dispersion Relations 

R. Kaminski, JRP, F.J. Ynduráin Eur.Phys.J.A31:479-484,2007. PRD74:014001,2006

JRP ,F.J. Ynduráin. PRD71, 074016 (2005) , PRD69,114001 (2004), 

R. García Martín, R. Kaminski, JRP, J. Ruiz de Elvira, F.J. Ynduráin, Phys.Rev. D83 (2011) 074004, 

R. García Martín, R. Kaminski, JRP, J. Ruiz de Elvira ,Phys.Rev.Lett. 107 (2011) 072001



How well the Dispersion Relations are satisfied by unconstrained fits

We define an averaged 2 over these points, that we call d2

Every 25 MeV we look at the difference between both sides of the DR

divided by the uncertainty

d2 close to 1 means that the relation is well satisfied

d2>> 1 means the data set is inconsistent with the relation.

This is NOT a fit to the relation, just a check of the fits!!. 



How well the Dispersion Relations are satisfied by unconstrained fits

Only TWO FDRs involve the S0 wave

The 00 FDR is very sensitive

Some S0 data sets are very 

incompatible with FDR below 

900 MeV

Considered clearly 

inconsistent and discarded 

Dispersion Relations can be useful to discard conflicting data sets

Despite nice-looking fits, analytic properties WRONG.

Careful with extrapolations to complex plane 

Lessons: 

Other sets, not so badly. Do 

not discad them but 

ROOM FOR IMPROVEMENT



Our series of works: 2005-2011

Independent and simple fits 

to data in different channels.

“Unconstrained Data Fits=UDF”

Check Dispersion Relations 

Impose FDRs, Roy & GKPY Eqs

on data fits

“Constrained Data Fits CDF”

Describe data and are consistent with Dispersion relations

R. Kaminski, JRP, F.J. Ynduráin Eur.Phys.J.A31:479-484,2007. PRD74:014001,2006

JRP ,F.J. Ynduráin. PRD71, 074016 (2005) , PRD69,114001 (2004), 

R. García Martín, R. Kaminski, JRP, J. Ruiz de Elvira, F.J. Ynduráin, Phys.Rev. D83 (2011) 074004, 

R. García Martín, R. Kaminski, JRP, J. Ruiz de Elvira ,Phys.Rev.Lett. 107 (2011) 072001

Some sets discarded

Others, room for improvement



Imposing FDR’s, Roy Eqs., GKPY Eqs. and crossing sum rules

To improve our fits, we can IMPOSE FDR’s,  Roy Eqs.  GKPY Eqs. and some SRs

W roughly counts the number of effective degrees of freedom 
(sometimes we add weight on certain energy regions)

3 FDR’s 3 GKPY Eqs.

Sum Rules for

crossing

Parameters of the 

unconstrained  data 

fits

3 Roy Eqs.

We obtain CONSTRAINED FITS TO DATA (CFD) by minimizing:

𝜒2=𝑊 𝑑00
2
+ 𝑑0+

2
+ 𝑑𝐼𝑡=1

2
+ 𝑑𝑆0𝑅𝑜𝑦

2
+ 𝑑𝑆2𝑅𝑜𝑦

2
+ 𝑑𝑃𝑅𝑜𝑦

2
+ 𝑑𝑆0𝐺𝐾𝑃𝑌

2
+ 𝑑𝑆2𝐺𝐾𝑃𝑌

2
+ 𝑑𝑃𝐺𝐾𝑃𝑌

2
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Imposing FDRs and Sum rules

After imposing FDRs and SRs

The resulting fits differ by less than ~1 -1.5  from original unconstrained fits

Remarkable 

improvement

in 00 FDR

But some sets

cannot be made 

to satisfy SR:

DISCARDED

Fit C included within uncertainties of “Global Fit”.

So we keep the “Global Fit”



Forward Dispersion Relations  for UNCONSTRAINED fits

FDRs averaged d2

00 0.31              2.13

0+ 1.03              1.11

It=1           1.62              2.69

<932MeV   <1400MeV 

NOT GOOD! In the intermediate  

region. Need improvement



Roy Eqs. for  UNCONSTRAINED fits

Roy Eqs. averaged d2

GOOD! But room for improvement

S0wave         0.64              0.56

P wave          0.79              0.69

S2 wave        1.35              1.37

<932MeV      <1100MeV 



GKPY Eqs. for  UNCONSTRAINED fits

Roy Eqs. averaged d2

S0wave         1.78              2.42

P wave         2.44              2.13

S2 wave        1.19              1.14

<932MeV      <1100MeV 

Pretty bad. GKPY  Eqs are much stricter

Lots of room for improvement



Forward Dispersion Relations  for CONSTRAINED fits

FDRs averaged d2

00 0.32              0.51

0+ 0.33              0.43

It=1           0.06              0.25

<932MeV   <1400MeV 

VERY GOOD!!!



Roy Eqs. for  CONSTRAINED fits

Roy Eqs. averaged d2

S0wave         0.02              0.04

P wave          0.04              0.12

S2 wave        0.21              0.26

<932MeV      <1100MeV 

VERY GOOD!!!



GKPY Eqs. for  CONSTRAINED fits

Roy Eqs. averaged d2

S0wave         0.23              0.24

P wave          0.68              0.60

S2 wave        0.12              0.11

<932MeV      <1100MeV 

VERY GOOD!!!



S0 wave: from UFD to CFD

Only sizable

change in 

f0(980) 

region

Dip solution 

preferred



From UFD to CFD

As expected, the wave suffering the largest change is the D2

Apart from S0 and D2, changes in other waves from UFD to CFD is

imperceptible



Other groups (Ananthanarayan, Gasser, Laetwyler, Caprini, Colangelo, Maussallam) 

have used Roy Eqs. alone to obtain 

SOLUTIONS for the S and P waves below 800 or 1000 MeV, 

using the rest as input.

Other approaches

For their most precise results, they use Chiral Perturbation Theory as INPUT
(or universal band)

The results shown so far are 

quite consistent with theirs



A similar approach can be followed for πK.

πK Scattering

The scalar I=1/2 wave is again a mess

There is also a SOLUTION of 

Roy-Steiner equations 

in the elastic region. Uses ChPT as input

(Descotes-Genon, Moussallam)

Roy-Steiner equations are more complicated because using crossing 

to rewrite the left cut one also needs ππ→KK.

But FDRs are equally simple…

In addition, the different masses 

give rise to new analytic structures 

(Circular cut)



(not a solution of dispersión relations,

but a constrained fit)

A.Rodas & JRP, PRD93,074025 (2016)

Dispersive analysis of 

πK scattering DATA

First observation:

Forward Dispersion relations

Not well satisfied by data

Particularly at high energies

So we use 

Forward Dispersion Relations 

as CONSTRAINTS on fits



S-waves. The most interesting for the K0* resonances 

Largest changes from UFD to 

CFD

at higher energies

From Unconstrained (UFD) to Constrained Fits to data (CFD)



P-waves:  Small changes

SOLUTION from 

previous Roy-Steiner 

approach

From Unconstrained (UFD) to Constrained Fits to data (CFD)

Our fits

describe 

data well



D-waves:  Largest changes of all, but at very high energies

From Unconstrained (UFD) to Constrained Fits to data (CFD)

F-waves:  

Imperceptible changes

Regge parameterizations allowed to vary: Only πK-ρ residue changes by 1.4 

deviations



Consistency up to 1.6 GeV!!

Consistency up to 1.74 GeV!!



Our series of works: 2005-2011

Independent and simple fits 

to data in different channels.

“Unconstrained Data Fits=UDF”

Check Dispersion Relations 

Impose FDRs, Roy & GKPY Eqs

on data fits

“Constrained Data Fits CDF”

Describe data and are consistent with Dispersion relations

For resonance poles: Continuation to complex plane

USING THE DISPERSIVE INTEGRALS

R. Kaminski, JRP, F.J. Ynduráin Eur.Phys.J.A31:479-484,2007. PRD74:014001,2006

JRP ,F.J. Ynduráin. PRD71, 074016 (2005) , PRD69,114001 (2004), 

R. García Martín, R. Kaminski, JRP, J. Ruiz de Elvira, F.J. Ynduráin, Phys.Rev. D83 (2011) 074004, 

R. García Martín, R. Kaminski, JRP, J. Ruiz de Elvira ,Phys.Rev.Lett. 107 (2011) 072001



Some relevant Roy-like POLE Determinations
which the PDG took into account in their 2012 σ revision

GKPY equations = Roy like with one subtraction
R. Garcia-Martin , R. Kaminski, JRP, J. Ruiz de Elvira, PRL107, 072001(2011).

Includes latest NA48/2 constrained data fit .One subtraction allows use of data only

NO ChPT  input but good agreement with previous Roy Eqs.+ChPT results.
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Roy equations B. Moussallam, Eur. Phys. J. C71, 1814 (2011).

An S0 Wave solution up to KK threshold with input from previous Roy Eq. works
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Roy Eqs. I. Caprini, G. Colangelo, H. Leutwyler PRL97 011601 (2006)

An S0 Wave solution up to 800 MeV, uses ChPT input
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The f0(600) or “sigma”

in PDG 1996-2010
M=400-1200 MeV

Γ=500-1000 MeV

These and other experimental results triggered a

LONG AWAITED CHANGE ON “sigma” RESONANCE @ PDG!!

Becomes

f0(500) or “sigma”

in PDG 2012

M=400-550 MeV

Γ=400-700 MeV

To my view…

still too

conservative, 

but quite a good

improvement



Actually, in the PDG 2017:  “Note on scalars”

9. G. Colangelo, J. Gasser, and H. Leutwyler, NPB603, 125 (2001).

10. I. Caprini, G. Colangelo, and H. Leutwyler, PRL 96, 132001 (2006).

11. R. Garcia-Martin , R. Kaminski, JRP, J. Ruiz de Elvira, PRL107, 072001(2011).

12. B. Moussallam, Eur. Phys. J. C71, 1814 (2011)

13. P. Masjuan, J. Ruiz de Elvira, J.J. Sanz-Cillero, PRD90, 097901 (2014).

.

JRP, Physics Reports 658-2016-1

(449−16
+22)-i(275±12) MeV

Combining conservatively

statistical and systematic 

uncertainties I estimate:

“One might just consider the most advanced dispersive analyses, Refs. 

[9–13]. They agree on a pole position close to (450−i 280) MeV.”



Unfortunately, to keep the confusion

the PDG still quotes a “Breit-Wigner mass” and width…

I have no words…

This was a long awaited improvement !!!! 



Comments on the minor additions to the K0*(800) @PDG12

Still “omittted from the summary table” since, “needs confirmation”

But, all sensible implementations of unitarity, chiral symmetry, describing the data 

find a pole between 650 and 770 MeV with a 550 MeV width or larger.
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Since 2009 two EXPERiMENTAL results are quoted from D decays @ BES2

Surprisingly BES2 gives a pole position of

MeV)22273()29682(  i

Fortunately, the most sounded determination comes from a Roy-Steiner

dispersive formalism, consistent with UChPT Decotes Genon et al 2006

Recently found as virtual state on the lattice (J.Dudek et al., 2014) consistently with UChPT

But AGAIN!! PDG goes on giving Breit-Wigner parameters!!  More confusion!!



Kappa pole from CFD

THERE IS ALSO A KAPPA POLE in our CFD parameterizations

Extracted from conformal parameterization (STILL MODEL DEPENDENT)
A.Rodas & JRP, PRD93,074025 (2016)

M-i Γ/2=(680±15)-i(334±i7.5) MeV

Compare to PDG:  M-i Γ/2=(682±29)-i(273±i12) MeV 

We have amplitudes that describe data and satisfy dispersion relations up to 1.6 GeV

Using Padé Sequences… A.Rodas & JRP  & J. Ruiz de ElviraEur. Phys. J. C (2017) 77:91

M-i Γ/2=(680±13)-i(325±i 7) MeV



• Dispersion relations have been useful for establishing the existence 

of resonances and for rigorous determinations of their parameters

• For  light scalars, they have settled the longstanding σ-meson 

controversy and are on the way to settle that of the κ-meson

Summary

Still in progress:

A second dispersive determinationwith Roy-Steiner and FDRs  will finally settle the

κ/K0*(800) issue at the PDG. Our group has been asked to do it. 

We are about to finish the ππ→KK analysis needed asinput for πK→πK


