# Advances in nucleonnucleon scattering

Amy Nicholson UNC, Chapel Hill

mm

Multi-Hadron Systems from Lattice QCD INT, Seattle, Feb. 7, 2018

LVX

# NN systems

- What do we need to do nuclear physics?
- Must have full control over 2-body systems
  - How do we project onto desired states?
  - How do we disentangle signals from closely spaced energy levels?
  - How do we beat the noise?

Good operators (and analysis)!





Trying to pull off tiny correction compared to large nucleon mass:  $\Delta E = E_{NN} - 2E_{N}$ 





## Excited state contamination





Elastic scattering (2-body) ΔE ~ 50 MeV

Inelastic single body  $\Delta E \sim m_{\pi}$ 

# Reducing elastic 2-body excited states

- Project onto non-interacting eigenstates of the box
- Very costly to perform exact momentum/angular momentum projection at both source & sink (~V)
- Perform exact projection only at the sink



Figures from Luu & Savage (2011)

# Reducing elastic 2-body excited states

- Project onto non-interacting eigenstates of the box
- Very costly to perform exact momentum/angular momentum projection at both source & sink (~V)
- Source: need spatially displaced source operators to have overlap with  $\ell > 0$
- Even for s-wave, displaced sources are cleaner









Starting with a good interpolating operator for a single nucleon at  $x_0$ ....



Add displaced nucleon: "Face" (6)



Add displaced nucleon: "Edge" (12)



Add displaced nucleon: "Corner" (8)



Different source types give us a handle for isolating the desired state



#### Source Overlap

Project Luu & Savage momentum sources to corner as a function of  $\pi\Delta x/L$ 



#### Source Overlap

Project Luu & Savage momentum sources to faces as a function of  $\pi\Delta x/L$ 



#### Source Overlap

Project Luu & Savage momentum sources to edges as a function of  $\pi\Delta x/L$ 



#### **Propagator Reuse**

0 = (0, 0, 0)A = (L, L, L)/2 $C = (\pm 1, \pm 1, \pm 1) \Delta x$ 10 local sources +1 maximally displaced +1 corner( $\Delta x$ ) around 0 +1 corner(L/2- $\Delta x$ ) around A +1/2 corner( $2\Delta x$ ) from C +2 faces( $2\Delta x$ ) from C +1 edges( $2\Delta x$ ) from C







Large displacements are necessary for maximal overlap with low-energy states



#### Magic Choice: $\Delta x = L/8 (=3L/8)$



#### Magic Choice: $\Delta x = L/8 (=3L/8)$



#### Magic Choice: $\Delta x = L/8 (=3L/8)$







HadSpec 1004.4930

## Source: position space







| Partial wave               | Irreps                                    |
|----------------------------|-------------------------------------------|
| $^{1}S_{0}$                | $A_1^+$                                   |
| $^{3}P_{0}$                | $A_1^-$                                   |
| ${}^{3}P_{1}$              | $T_1^-$                                   |
| ${}^{3}P_{2}, {}^{3}F_{2}$ | $E^- \oplus T_2^-$                        |
| $^{1}D_{2}$                | $E^+\oplus T_2^+$                         |
| ${}^{3}F_{3}$              | $A_2^-\oplus T_1^-\oplus T_2^-$           |
| $^{3}F_{4}$                | $A_1^-\oplus E^-\oplus T_1^-\oplus T_2^-$ |

Set of multiple sources coupling to same cubic irrep



- mπ ~ 800 MeV
- a ~ 0.145 fm
- L ~ 2.5, 3.5 fm
- ~ IM sources
- W&M/JLab configs





### NN scattering at $m_{\pi} \sim 800 \text{ MeV}$



## Local vs. displaced









\*not an official logo

## Matrix Prony: poor man's GEVP





Single nucleon correlator









NPLQCD (2009)



NPLQCD (2009)



NPLQCD (2009)

### MP for NN





### MP for NN



Long time behavior of NN correlator dominated by inelastic single nucleon excited state

Need to improve single nucleon interpolating operator for earlier plateaus

### MP for NN





![](_page_36_Figure_0.jpeg)

CalLat (2017)

### MP method for NN

![](_page_37_Figure_1.jpeg)

- Works best when you've eliminated leading elastic states
- Prony often doesn't work well for more than 2 ops:
  - should be able to do two stages of Prony to further reduce elastic excited states
  - or, do simultaneous fits of different elastic ops

### MP method for NN

![](_page_38_Figure_1.jpeg)

- Contributions from inelastic excited states are important
- Forming a ratio with the single N correlator can lead to delicate cancellations between numerator and denominator
  - Improved single N operator lets us more confidently use the ratio

![](_page_39_Figure_0.jpeg)

- "Fake plateaus" resulting from cancellation in non-positive correlation functions require at least three terms of roughly the same order over a given time range
  - Eliminating contamination from single nucleon excitations reduces this possibility
- Can we use the ratio?

$$\log\left[\frac{C_{NN}(t)}{C_{N}^{2}(t)}\right] \sim \log\left[\sum_{n} \left(1 + \frac{\delta_{n}}{A_{0}^{2}}\right)e^{-(\epsilon_{n})t}\right] + \frac{2\lambda_{1}}{A_{0}}e^{-\Delta_{01}t} - B\left(\frac{\lambda_{1}}{A_{0}} + \delta_{1}^{''}\right)e^{-(\Delta_{01} + \epsilon_{1}^{'})t}$$

![](_page_40_Figure_0.jpeg)

CalLat (2017)

# Summary

• Lüscher method requires excellent resolution of

energy levels  $\longrightarrow$  excellent operators

- Displaced operators help reduce elastic excited state contamination
- •Need to improve single nucleon!
- Still need to sort out composite states at  $m_{\pi} \sim 800$  MeV
- Variational?

Jülich Evan Berkowitz

LBL/UCBChia Cheng ChangThorsten KurthMark StrotherAndré Walker-Loud

NVIDIA Kate Clark

UNC Amy Nicholson

JLab Balint Jóo

RIKEN/BNL Enrico Rinaldi

LLNL Arjun Gambhir Pavlos Vranas

![](_page_42_Picture_7.jpeg)

red = postdoc blue = grad student