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1 Introduction

• Hadron interactions can be studied directly by lattice QCD using
Lüscher formula and its extensions
cf. many talks in this workshop

♦ Lüscher formula utilizes Bethe-Salpeter(BS) wave function out-
side the interaction range of two hadrons Lüscher(1986,1990),...

♦ A relation between on-shell scattering amplitude and BS wave
function inside the interaction range was discussed in the infinite
volume Lin et.al.(2001),CP-PACS(2005),Yamazaki and Kuramashi(2017)

cf. talk by Yamazaki-san
→ We extend this approach to a finite volume

• cf. HAL QCD method (indirect method through a potential from BS
wave function)
cf. talks by Sinya-san, Iritani-san, Doi-san, Kawai-san
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2 Formulation(in brief)

[Infinite volume limit L = ∞] Lin et.al.(2001),CP-PACS(2005),Yamazaki and Kuramashi(2017)

• Scattering amplitude H(p; k) is obtained by BS wave function φ(x; k)

♦ The integral range can be changed from ∞ to finite interaction
range R, if (∆ + k2)φ(x; k) = 0 for x > R
∴ Lattice simulation for H(p; k) is possible, if R < L/2

♦ NB. we consider I = 2 S-wave two-pion in the center of mass frame below inelastic

threshold. Overall factors are omitted for simplicity.

φ(x; k) = 〈0|π1(x/2)π2(−x/2)|π1(k)π2(−k); in〉

= e
ik·x

+

∫ d3p

(2π)3

H(p; k)

p2 − k2 − iǫ
e
ip·x

+ (inelastic part),

∴ H(p; k) = −

∫

∞

−∞
d
3
x e

−ip·x
(

∆ + k
2
)

φ(x; k)

= −

∫ R

−R
d
3
x e

−ip·x
(

∆ + k
2
)

φ(x; k),

where
(

∆ + k
2
)

φ(x; k) = 0 for x > R
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[Infinite volume limit L = ∞(continued)]

• Once H(p; k) at on-shell p = k is obtained, we can extract the scatter-
ing phase shift δ(k), and the scattering length a0.

♦ Lattice simulation of H(k; k) inside interaction range R gives δ(k)

♦ NB. H(k; k) is removed in the final form of Lüscher formula
→ ”Please keep H(k; k). H(k; k) also has scattering info.”

H(k; k) =
4π

k
e
iδ(k)

sin δ(k)

a0 = tan δ(k)/k + O(k
2
)

[Quick derivation on Lüscher formula(omitting some overall factors for simplicity)]

φ(x; k) −−−−→
x>R

v00G(x; k), G(x; k) : solution of (∆ + k
2
)φ(x; k) = 0

= C00e
iδ(k)

sin(kx + δ(k))/kx + (l ≥ 4 terms), v00, C00 : constants

Expanding G(x; k) by jl(kx) and n0(kx) and comparing their coefficients leads to

C00H(k; k) = v00

k cot δ(k)C00H(k; k) = 4πv00g00(k)

Taking a ratio of the above two equations leads to Lüscher formula,

k cot δ(k) = 4πg00(k)
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3 Set up of simulation

We use I = 2 ππ system in quenched lattice QCD as a test bed

• Iwasaki gauge action at β = 2.334(a−1 = 1.207[GeV]) CP-PACS(2001,2005)

• Valence Clover quark action with CSW = 1.398

♦ Four random Z(2) sources avoiding Fierz contamination
→ Six combinations of two quark propagators
(Wall sources for comparison) + Coulomb gauge fixing

♦ The number of source positions is 32 i.e. every two time slices

♦ Periodic boundary condition in space, Dirichlet boundary condi-
tion in time

Lattice κval mπ [GeV] Nconfig

243 × 64 0.1340 0.86 200
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[Observable : four-point function 〈0|Φ(x, t)|π+π+, Ek〉]

• I = 2 two-pion BS wave function φ(x; k) is defined by a four-point
function 〈0|Φ(x, t)|π+π+, Ek〉 with two-pion operator Φ(x, t)

♦ A
+
1 projection is performed for S-wave in center of mass frame. Overall factors are

omitted for simplicity.

φ(x; k) = 〈0|Φ(x, t)|π
+

π
+

, Ek〉e
Ekt

,

where

Φ(x, t) =
∑

r

π
+

(R
A

+
1

[x] + r, t)π
+

(r, t),

R
A

+
1

[x] : projector onto A
+
1 cubic group

Ek = 2
√

m2
π + k2

∆φ(x; k) =

3
∑

i=1

(φ(x + î; k) + φ(x − î; k) − 2φ(x; k))

: Laplacian on lattices

H(p; k) := −

∫ ∞

−∞
d
3
x e

−ip·x
(

∆ + k
2
)

φ(x; k)

= −
∑

|x|<R<L/2

e
−ip·x

(

∆ + k
2
)

φ(x; k)
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4 Result

[Check of plateau of temporal correlators]

• Effective masses of one-pion meff(π) and I = 2 two-pion Eeff
k (ππ) as

well as ∆Eeff
k = Eeff

k (ππ)− 2meff(π) have plateau in t = [12, 44]
→ No fake plateau is observed for our case

m
eff

= log(prop(t)/prop(t + 1))
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[Check of plateau of a ratio of spatial wave functions φ(x; k)/φ(xref ; k)]

• Ratio of wave functions φ(x; k)/φ(xref ; k) have plateau in t = [32, 44]

• cf. temporal correlators have plateau in t = [12, 44]

♦ Larger t is required for wave functions, but still under control

φ(x; k) = const × prop4pt(x, t)e
Ekt

φ(x; k)/φ(xref ; k) = prop4pt(x, t)/prop4pt(xref , t)
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[Check of sufficient condition: (∆ + k2)φ(x; k) = 0 for R < x < L/2]

• We confirm R ∼ 10, which is consistent with the result by CP-PACS(2005)
→ The sufficient condition is satisfied within our statistical errors
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♦ Reference point xref = (12, 7, 2) is chosen to minimize l = 4
contribution s.t.
φ(x; k) = (l = 0 term) + (l = 4 term) + ...

|Y40(R
A

+
1

[x0/x0])j4(kx0)/(Y00(R
A

+
1

[x0/x0])j0(kx0))| < 10−6

Ylm : spherical harmonics, jl : spherical Bessel function

♦ Strictly speaking, there must be exp tail, which is below our statistical error
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[Check of sufficient condition: (∆ + k2)φ(x; k) = 0 for R < x < L/2 (cont)]

• We also confirm R ∼ 10 by HL(k; k) and φ(x; k)

R(x) =
HL(k; k)

φ(x; k)
G(x; k) −−−−→

x>R

C00H(k; k)

v00G(x; k)
G(x; k) = 1

where

HL(k; k) := −
∑

x∈L3

j0(kx)(∆ + k
2
)φ(x; k)

= C00H(k; k) (I have omitted an overall factor C00)

G(x; k) : a solution of (∆ + k
2
)φ(x; k) = 0 for x > R

C00, v00 : constants

[Quick derivation on Lüscher formula (again,
omitting some overall factors for simplicity)]

φ(x; k) −−−−→
x>R

v00G(x; k)

= C00e
iδ(k)

sin(kx + δ(k))/kx

+(l ≥ 4 terms)

Expanding G(x; k) by jl(kx) and n0(kx) and
comparing their coefficients leads to

C00H(k; k) = v00

k cot δ(k)C00H(k; k) = 4πv00g00(k) 0.80
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[Comparison of scattering lengths a0]

• a0 is evaluated by Lüscher’s formula outside the interaction range,
and by HL(k; k) inside the interaction range

♦ Both results agree well

♦ cf. CP-PACS(2005) employs Lüscher’s formula with Wall sources

a0/mπ = tan δ(k)/(kmπ) + O(k
2
)

tan δ(k) =
− sin(kxref )

4πxrefφ(xref ; k)/HL(k; k) + cos(kxref )
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[Additional output: half off-shell scattering amplitude H(p; k)]

• H(p; k) can be estimated by lattice QCD

♦ H(p; k) can be supplemental input to theoretical models of hadrons

♦ NB. H(p; k) / H(k; k) is available below 4π threshold, although there is no true inelastic

threshold in quenched QCD (quenched artificial inelastic effects may appear)

HL(p; k) = −
∑

x∈L3

j0(px)(∆ + k
2
)φ(x; k)

H(p; k)/H(k; k) = HL(p; k)/HL(k; k)
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[Remark: LSZ reduction formula in momentum space]

• HL(p; k) can be calculated using LSZ reduction formula in momentum
space, instead of laplacian ∆. cf. J.Carbonell and V.A.Karmanov(2016)

♦ Care is needed. If we cut the integration range of H(p; k) at the
interaction range R, a surface term appears in general.

H(p; k) = −

∫ ∞

−∞
d
3
x e

−ip·x
(∆ + k

2
)φ(x; k)

= −

∫ R

−R
d
3
x e

−ip·x
(∆ + k

2
)φ(x; k) ∵ (∆ + k

2
)φ(x; k) = 0 for x > R

⇓ partial integration

= (p
2

− k
2
)

∫

R

−R
d
3
x e

−ip·x
φ(x; k) + [surface term]

R
−R

At on-shell(p = k),

H(k; k) = [surface term]
R
−R

=
4π

k
e
iδ(k)

sin δ(k) // R dependence vanishes
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[Remark: LSZ reduction formula in momentum space(continued)]

• HL(p; k) using lattice laplacian ∆ agrees with that using LSZ reduction
formula at pi = (2π/L)ni, ni ∈ Z with periodic boundary condition,
where (surface term) = 0

HL(p; k) := −

L/2
∑

−L/2

e
−ip·x

(∆ + k
2
)φ(x; k) supposing R < L/2

= −

L/2
∑

−L/2

e
−ip·x

3
∑

i=1

(φ(x + î; k) + φ(x − î; k) − 2φ(x; k)) − k
2
φ(x; k)

⇓ periodic boundary condition: φ(xi = L/2 + 1; k) = φ(xi = −L/2; k)

= −

L/2
∑

−L/2

e
−ip·x

3
∑

i=1

(e
ipi + e

−ipi − 2)φ(x; k) − k
2
φ(x; k)

= (p̃
2

− k
2
)φ(p; k) i.e. (surface term) = 0

where

φ(p; k) =
∑

x∈L3

e
−ip·x

φ(x; k)

p̃
2

=
3
∑

i=1

p̃
2
i , p̃i :=

2

a
sin

api

2
, pi = (2π/L)ni, ni ∈ Z
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[Remark: LSZ reduction formula in momentum space(continued)]

• HL(p; k) from lattice laplacian ∆ agrees with that using LSZ reduction
formula at pi = (2π/L)ni, ni ∈ Z with periodic boundary condition
→ Numerically checked to be correct
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5 Summary

We evaluate a scattering length a0 of I = 2 ππ system in the quenched lattice
QCD using Bethe-Salpeter wave function not only outside the interaction
range but also inside the interaction range

• No fake plateau is observed for our case

• Consistency is checked

♦ Our result of a0 using the scattering amplitude inside the in-
teraction range agrees with the value of Lüscher’s finite volume
method using data outside the interaction range

• Additional output is obtained

♦ A half off-shell scattering amplitude H(p; k) can be estimated
by lattice QCD, which can be supplemental input to theoretical
models of hadrons
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[Future work]
Apply our strategy to

• More realistic case (ex. Nf = 2 + 1 full QCD on the physical point)

• More complicated system ( other 2-body system with not only up,down,
strange but also charm quarks, and hopefully 3-body system)
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