Scattering length from Bethe-Salpeter wave function
inside the interaction range $\frac{1}{2}$ $\frac{1}{2}$ inside the interaction range

Yusuke Namekawa

in collaboration with Takeshi Yamazaki

Contents

- 1Introduction
- 2Formulation(in brief)
- 3Set up of simulation
- 4Result
- 5Summary

 $\frac{y}{-1}$ / 17 – 16

1Introduction

- Hadron interactions can be studied directly by lattice QCD using Lüscher formula and its extensions cf. many talks in this workshop
	- \Diamond Lüscher formula utilizes Bethe-Salpeter(BS) wave function outside the interaction range of two hadrons Lüscher(1986,1990),...
	- \diamondsuit A relation between on-shell scattering amplitude and BS wave function inside the interaction range was discussed in the infinite $\text{volume} \text{ Lin et.aI.}(2001), \text{CP-PACS}(2005), \text{Yamazaki and Kuramashi}(2017)$ cf. talk by Yamazaki-san
		- \rightarrow We extend this approach to a finite volume
- cf. HAL QCD method (indirect method through a potential from BS wave function) cf. talks by Sinya-san, Iritani-san, Doi-san, Kawai-san

2Formulation(in brief)

 $[\text{Infinite volume limit } L = \infty]$ Lin et.al.(2001),CP-PACS(2005),Yamazaki and Kuramashi(2017)

- Scattering amplitude $H(p; k)$ is obtained by BS wave function $\phi(\mathbf{x}; k)$
	- \diamondsuit \Diamond The integral range can be changed from ∞ to finite interaction
range R if $(\Lambda + k^2)\phi(\mathbf{x}; k) = 0$ for $x > R$ range R, if $(\Delta + k^2)\phi(\mathbf{x}; k) = 0$ for $x > R$ ∴ Lattice simulation for $H(p; k)$ is possible, if $R < L/2$
	- \diamondsuit NB. we consider $I = 2$ S-wave two-pion in the center of mass frame below inelastic threshold. Overall factors are omitted for simplicity.

$$
\phi(\mathbf{x}; k) = \langle 0 | \pi_1(\mathbf{x}/2) \pi_2(-\mathbf{x}/2) | \pi_1(\mathbf{k}) \pi_2(-\mathbf{k}); \text{in} \rangle
$$

\n
$$
= e^{i\mathbf{k} \cdot \mathbf{x}} + \int \frac{d^3 p}{(2\pi)^3} \frac{H(p; k)}{p^2 - k^2 - i\epsilon} e^{i\mathbf{p} \cdot \mathbf{x}} + (\text{inelastic part}),
$$

\n
$$
\therefore H(p; k) = -\int_{-\infty}^{\infty} d^3 x e^{-i\mathbf{p} \cdot \mathbf{x}} (\Delta + k^2) \phi(\mathbf{x}; k)
$$

\n
$$
= -\int_{-R}^{R} d^3 x e^{-i\mathbf{p} \cdot \mathbf{x}} (\Delta + k^2) \phi(\mathbf{x}; k),
$$

\nwhere $(\Delta + k^2) \phi(\mathbf{x}; k) = 0$ for $x > R$

– ³ / ¹⁷ –

[Infinite volume limit $L = \infty$ (continued)]

- Once $H(p; k)$ at on-shell $p = k$ is obtained, we can extract the scatter-
in a share shift $S(k)$ and the section levels ing phase shift $\delta(k)$, and the scattering length a_0 .
	- \diamondsuit Lattice simulation of $H(k; k)$ inside interaction range R gives $\delta(k)$
	- \Diamond NB. $H(k; k)$ is removed in the final form of Lüscher formula \rightarrow "Please keep $H(k; k)$. $H(k; k)$ also has scattering info."

$$
H(k; k) = \frac{4\pi}{k} e^{i\delta(k)} \sin \delta(k)
$$

$$
a_0 = \tan \delta(k)/k + O(k^2)
$$

[Quick derivation on Lüscher formula(omitting some overall factors for simplicity)]

$$
\phi(\mathbf{x}; k) \quad \xrightarrow[x > R]{} \quad v_{00} G(\mathbf{x}; k), \quad G(\mathbf{x}; k) : \text{ solution of } (\Delta + k^2) \phi(\mathbf{x}; k) = 0
$$
\n
$$
= C_{00} e^{i\delta(k)} \sin(kx + \delta(k))/kx + (l \ge 4 \text{ terms}), \quad v_{00}, C_{00} : \text{constants}
$$

Expanding $G(\mathbf{x}; k)$ by $j_l(kx)$ and $n_0(kx)$ and comparing their coefficients leads to

$$
C_{00}H(k;k) = v_{00}
$$

$$
k \cot \delta(k) C_{00}H(k;k) = 4\pi v_{00}g_{00}(k)
$$

Taking a ratio of the above two equations leads to Lüscher formula,

$$
k \cot \delta(k) = 4\pi g_{00}(k) - 4 / 17 -
$$

3Set up of simulation

We use $I = 2 \pi \pi$ system in quenched lattice QCD as a test bed

- Iwasaki gauge action at $\beta = 2.334(a^{-1} = 1.207[\text{GeV}])$ cp-pacs(2001,2005)
- Valence Clover quark action with $C_{SW} = 1.398$
	- \Diamond Four random $Z(2)$ sources avoiding Fierz contamination \rightarrow Six combinations of two quark propagators
(Wall sources for comparison) \pm Coulomb gau (Wall sources for comparison) $+$ Coulomb gauge fixing
	- \diamondsuit The number of source positions is 32 i.e. every two time slices
	- \diamondsuit Periodic boundary condition in space, Dirichlet boundary condition in time

 $\left[\text{Observeable}: \text{ four-point function }\langle 0|\Phi({\bf x},t)|\pi^+\pi^+, E_k\rangle \right]$

- $I = 2$ two-pion BS wave function $\phi(\mathbf{x}; k)$ is defined by a four-point function $\langle 0 | \Phi(\mathbf{x}, t) | \pi^+ \pi^+, E_k \rangle$ with two-pion operator $\Phi(\mathbf{x}, t)$
	- $\Diamond A_1^+$ omitted for simplicity. $\frac{1}{1}$ projection is performed for S-wave in center of mass frame. Overall factors are
nitted for simplicity.

$$
\phi(\mathbf{x}; k) = \langle 0 | \Phi(\mathbf{x}, t) | \pi^+ \pi^+, E_k \rangle e^{E_k t},
$$

\nwhere
\n
$$
\Phi(\mathbf{x}, t) = \sum_{\mathbf{r}} \pi^+ (R_{A_1^+}[\mathbf{x}] + \mathbf{r}, t) \pi^+ (\mathbf{r}, t),
$$

\n
$$
R_{A_1^+}[\mathbf{x}] : \text{ projector onto } A_1^+ \text{ cubic group}
$$

\n
$$
E_k = 2\sqrt{m_{\pi}^2 + k^2}
$$

\n
$$
\Delta \phi(\mathbf{x}; k) = \sum_{i=1}^3 (\phi(\mathbf{x} + \hat{i}; k) + \phi(\mathbf{x} - \hat{i}; k) - 2\phi(\mathbf{x}; k))
$$

\n
$$
= \sum_{i=1}^3 (\phi(\mathbf{x} + \hat{i}; k) + \phi(\mathbf{x} - \hat{i}; k) - 2\phi(\mathbf{x}; k))
$$

\n
$$
= -\int_{-\infty}^{\infty} d^3 x e^{-i \mathbf{p} \cdot \mathbf{x}} (\Delta + k^2) \phi(\mathbf{x}; k)
$$

\n
$$
= -\sum_{|\pi| < R < L/2} e^{-i \mathbf{p} \cdot \mathbf{x}} (\Delta + k^2) \phi(\mathbf{x}; k)
$$

\n
$$
= 6 / 17 -
$$

4Result

[Check of ^plateau of temporal correlators]

 \bullet • Effective masses of one-pion $m^{\text{eff}}(\pi)$ and $I = 2$ two-pion $E_k^{\text{eff}}(\pi \pi)$ as well as $\Delta E_k^{\text{eff}} = E_k^{\text{eff}}(\pi \pi) - 2m^{\text{eff}}(\pi)$ have plateau in $t = [12, 44]$
 \rightarrow No fake plateau is observed for our case. \rightarrow No fake plateau is observed for our case

[Check of plateau of a ratio of spatial wave functions $\phi(\mathbf{x}; k)/\phi(\mathbf{x}_{\text{ref}}; k)$]

- Ratio of wave functions $\phi(\mathbf{x}; k) / \phi(\mathbf{x}_{\text{ref}}; k)$ have plateau in $t = [32, 44]$
- cf. temporal correlators have plateau in $t = [12, 44]$

 \diamondsuit \diamondsuit Larger t is required for wave functions, but still under control

$$
\phi(\mathbf{x}; k) = \text{const} \times prop_{4pt}(\mathbf{x}, t) e^{E_k t}
$$

$$
\phi(\mathbf{x}; k) / \phi(\mathbf{x}_{ref}; k) = prop_{4pt}(\mathbf{x}, t) / prop_{4pt}(\mathbf{x}_{ref}, t)
$$

– ⁸ / ¹⁷ –

[Check of sufficient condition: $(\Delta + k^2)$ $(a^2)\phi(\mathbf{x}; k) = 0 \text{ for } R < x < L/2$

• We confirm $R \sim 10$, which is \rightarrow The sufficient condition is satisfied within our statistical errors \sim 10, which is consistent with the result by CP-PACS(2005)
ont condition is satisfied within our statistical errors

- \diamondsuit \Diamond Reference point $\mathbf{x}_{ref} = (12, 7, 2)$ is chosen to minimize $l = 4$ contribution s t contribution s.t. $\phi(\mathbf{x}; k) = (l = 0 \text{ term}) + (l = 4 \text{ term}) +$ $\frac{1}{\sqrt{2}}$... $|Y_{40}(R$ $^{11}A_1^+$ Y_{lm} : spherical harmonics, j_l : spherical Bessel function
Strictly speaking there must be sup tail, which is below a 1 $[\mathbf{x}_0/x_0]$)j₄(kx₀)/(Y₀₀(R) $^{11}A_1^+$ 1 $|\mathbf{x}_0/x_0|$) $j_0(kx_0)$)| < 10⁻¹ 6
- $\langle \rangle$ Strictly speaking, there must be exp tail, which is below our statistical error

$$
-9/17-
$$

[Check of sufficient condition: $(\Delta + k^2)$ $(a^2)\phi(\mathbf{x}; k) = 0$ for $R < x < L/2$ (cont)

• We also confirm $R \sim 10$ by $H_L(k; k)$ and $\phi(\mathbf{x}; k)$

$$
R(\mathbf{x}) = \frac{H_L(k; k)}{\phi(\mathbf{x}; k)} G(\mathbf{x}; k) \xrightarrow[x > R]{} \frac{C_{00} H(k; k)}{v_{00} G(\mathbf{x}; k)} G(\mathbf{x}; k) = 1
$$

where

$$
H_L(k; k) := -\sum_{\mathbf{x} \in L^3} j_0(kx)(\Delta + k^2) \phi(\mathbf{x}; k)
$$

 $=C_{00}H(k; k)$ (I have omitted an overall factor C_{00}) $G(\mathbf{x}; k):$ a solution of $(\Delta + k^2)$ $\mathcal{L}(\mathbf{x}; k) = 0 \text{ for } x > R$

 $C_{00}, v_{00}: \hbox{constants}$

[Quick derivation on Lüscher formula (again, omitting some overall factors for simplicity)]

$$
\phi(\mathbf{x}; k) \quad \overrightarrow{x>R} \quad v_{00}G(\mathbf{x}; k) \quad 1.05
$$
\n
$$
= C_{00}e^{i\delta(k)}\sin(kx + \delta(k))/kx \quad 1.00
$$
\n
$$
+ (l \ge 4 \text{ terms})
$$
\nExpanding $G(\mathbf{x}; k)$ by $j_l(kx)$ and $n_0(kx)$ and comparing their coefficients leads to\n
$$
C_{00}H(k; k) = v_{00}
$$
\n
$$
k \cot \delta(k) C_{00}H(k; k) = 4\pi v_{00}g_{00}(k) \quad 0.80
$$
\n
$$
= 4\pi v_{00}g_{00}(k) \quad 0.80
$$
\n
$$
= 4\pi v_{00}g_{00}(k) \quad 0.80
$$

– ¹⁰ / ¹⁷ –

[Comparison of scattering lengths a_0]

 \bullet a_0 and by $H_L(k; k)$ inside the interaction range α_0 is evaluated by Lüscher's formula outside the interaction range,

 \diamondsuit Both results agree well

 $\langle \rangle$ cf. CP-PACS(2005) employs Lüscher's formula with Wall sources

$$
a_0/m_{\pi} = \tan \delta(k)/(km_{\pi}) + O(k^2)
$$

\n
$$
\tan \delta(k) = \frac{-\sin(kx_{\text{ref}})}{4\pi x_{\text{ref}}\phi(\mathbf{x}_{\text{ref}}; k)/H_L(k; k) + \cos(kx_{\text{ref}})} \underbrace{\sum_{\substack{\mathbf{e} \\ \mathbf{e} \\ \mathbf{f} \\ \mathbf{f
$$

 $[Additional \,\, output: \,\, half \,\, off-shell \,\, scattering \,\,amplitude \,\, H(p;k)]$

- $H(p; k)$ can be estimated by lattice QCD
	- \diamondsuit $H(p;k)$ can be supplemental input to theoretical models of hadrons $\langle \rangle$ \bigvee NB. $H(p; k)$ / $H(k; k)$ is available below 4π threshold, although there is no true inelastic threshold in quenched QCD (quenched artificial inelastic effects may appear)

$$
H_{L}(p; k) = -\sum_{\mathbf{x} \in L^{3}} j_{0}(px)(\Delta + k^{2})\phi(\mathbf{x}; k)
$$
\n
$$
= H_{L}(p; k)/H_{L}(k; k)
$$
\n
$$
= H_{L}(p; k)/H_{L}(k; k)
$$
\n
$$
= \sum_{\mathbf{x} \in L^{3}} j_{0}(px)(\Delta + k^{2})\phi(\mathbf{x}; k)
$$
\n
$$
\sum_{\substack{\mathbf{x} \in L^{3} \\ \mathbf{x} \in L^{3}}} 0.8
$$
\n
$$
\sum_{\substack{\mathbf{x} \in L^{3} \\ \mathbf{x} \in L^{3}}} 0.8
$$
\n
$$
= \sum_{\substack{\mathbf{x} \in L^{3} \\ \mathbf{x} \in L^{3}}} j_{0}(px)(\Delta + k^{2})\phi(\mathbf{x}; k)
$$
\n
$$
\sum_{\substack{\mathbf{x} \in L^{3} \\ \mathbf{x} \in L^{3}}} 0.8
$$
\n
$$
= \sum_{\substack{\mathbf{x} \in L^{3} \\ \mathbf{x} \in L^{3}}} 0.8
$$
\n
$$
= \sum_{\substack{\mathbf{x} \in L^{3} \\ \mathbf{x} \in L^{3}}} j_{0}(px)(\Delta + k^{2})\phi(\mathbf{x}; k)
$$
\n
$$
= \sum_{\substack{\mathbf{x} \in L^{3} \\ \mathbf{x} \in L^{3}}} 0.8
$$
\n
$$
= \sum_{\substack{\mathbf{x} \in L^{3} \\ \mathbf{x} \in L^{3}}} 0.8
$$
\n
$$
= \sum_{\substack{\mathbf{x} \in L^{3} \\ \mathbf{x} \in L^{3}}} 0.8
$$
\n
$$
= \sum_{\substack{\mathbf{x} \in L^{3} \\ \mathbf{x} \in L^{3}}} 0.8
$$
\n
$$
= \sum_{\substack{\mathbf{x} \in L^{3} \\ \mathbf{x} \in L^{3}}} 0.8
$$
\n
$$
= \sum_{\substack{\mathbf{x} \in L^{3} \\ \mathbf{x} \in L^{3}}} 0.8
$$
\n
$$
= \sum_{\substack{\mathbf{x} \in L^{3} \\ \mathbf{x} \in L^{3}}} 0.8
$$
\n
$$
= \sum_{\sub
$$

[Remark: LSZ reduction formula in momentum space]

- $H_L(p; k)$ can be calculated using LSZ reduction formula in momentum $space,\,instead\,of\,laplacian\,\,\Delta.\,\,$ cf. J.Carbonell and V.A.Karmanov(2016)
	- \diamondsuit Care is needed. If we cut the integration range of $H(p;k)$ at the $interaction range R$, a surface term appears in general.

$$
H(p;k) = -\int_{-\infty}^{\infty} d^3x \, e^{-i\mathbf{p}\cdot\mathbf{x}} (\Delta + k^2) \phi(\mathbf{x}; k)
$$

=
$$
-\int_{-R}^{R} d^3x \, e^{-i\mathbf{p}\cdot\mathbf{x}} (\Delta + k^2) \phi(\mathbf{x}; k) \quad \therefore (\Delta + k^2) \phi(\mathbf{x}; k) = 0 \quad \text{for } x > R
$$

\$\downarrow\$ partial integration

$$
= (p2 - k2) \int_{-R}^{R} d3 x e-i \mathbf{P} \cdot \mathbf{x} \phi(\mathbf{x}; k) + [\text{surface term}]_{-R}^{R}
$$

At on-shell $(p=k),$

$$
H(k; k) = [\text{surface term}] \frac{R}{-R}
$$

= $\frac{4\pi}{k} e^{i\delta(k)} \sin \delta(k)$ // R dependence vanishes

– ¹³ / ¹⁷ –

[Remark: LSZ reduction formula in momentum space(continued)]

• $H_L(p; k)$ using lattice laplacian Δ agrees with that using LSZ reduction ${\rm formula \ at \ } p_i$ where (surface term) $= 0$ $n_i = (2\pi/L)n_i, n_i \in \mathbb{Z}$ with periodic boundary condition,

$$
H_L(p;k) := -\sum_{-L/2}^{L/2} e^{-i\mathbf{p}\cdot\mathbf{x}} (\Delta + k^2) \phi(\mathbf{x}; k) \text{ supposing } R < L/2
$$

\n
$$
= -\sum_{-L/2}^{L/2} e^{-i\mathbf{p}\cdot\mathbf{x}} \sum_{i=1}^3 (\phi(\mathbf{x} + \hat{i}; k) + \phi(\mathbf{x} - \hat{i}; k) - 2\phi(\mathbf{x}; k)) - k^2 \phi(\mathbf{x}; k)
$$

\n
$$
\downarrow \text{ periodic boundary condition: } \phi(x_i = L/2 + 1; k) = \phi(x_i = -L/2; k)
$$

\n
$$
= -\sum_{-L/2}^{L/2} e^{-i\mathbf{p}\cdot\mathbf{x}} \sum_{i=1}^3 (e^{ip_i} + e^{-ip_i} - 2)\phi(\mathbf{x}; k) - k^2 \phi(\mathbf{x}; k)
$$

\n
$$
= (\tilde{p}^2 - k^2)\phi(\mathbf{p}; k) \text{ i.e. (surface term)} = 0
$$

where

$$
\phi(\mathbf{p}; k) = \sum_{\mathbf{x} \in L^3} e^{-i\mathbf{p} \cdot \mathbf{x}} \phi(\mathbf{x}; k)
$$

$$
\tilde{p}^2 = \sum_{i=1}^3 \tilde{p}_i^2, \quad \tilde{p}_i := \frac{2}{a} \sin \frac{ap_i}{2}, \quad p_i = (2\pi/L)n_i, \quad n_i \in \mathbb{Z}
$$

– ¹⁴ / ¹⁷ –

[Remark: LSZ reduction formula in momentum space(continued)]

• $H_L(p; k)$ from lattice laplacian Δ agrees with that using LSZ reduction formula at p_i \rightarrow Numerically checked to be correct $i = (2\pi/L)n_i, n_i \in \mathbb{Z}$ with periodic boundary condition

5Summary

We evaluate a scattering length a_0 of $I = 2 \pi \pi$ system in the quenched lattice QCD using Bethe-Salpeter wave function not only outside the interactionrange but also inside the interaction range

- No fake ^plateau is observed for our case
- Consistency is checked
	- \diamondsuit Our result of a_0 using the scattering amplitude inside the interaction range agrees with the value of Lüscher's finite volume method using data outside the interaction range
- Additional output is obtained
	- \Diamond A half off-shell scattering amplitude $H(p; k)$ can be estimated by lattice QCD, which can be supplemental input to theoretical models of hadrons

[Future work] Apply our strategy to

- More realistic case (ex. $N_f = 2 + 1$ full QCD on the physical point)
- More complicated system (other 2-body system with not only up, down, strange but also charm quarks, and hopefully 3-body system)