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1 Introduction

e Hadron interactions can be studied directly by lattice QCD using
Liischer formula and its extensions
cf. many talks in this workshop

¢ Liischer formula utilizes Bethe-Salpeter(BS) wave function out-
side the interaction range of two hadrons Lischer(1986,1990),...

{ A relation between on-shell scattering amplitude and BS wave
function inside the interaction range was discussed in the infinite
volume rin et.al.(2001),CP-PACS(2005),Yamazaki and Kuramashi(2017)
cf. talk by Yamazaki-san
— We extend this approach to a finite volume

e cf. HAL QCD method (indirect method through a potential from BS
wave function)
cf. talks by Sinya-san, Iritani-san, Doi-san, Kawai-san
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2 Formulation(in brief)

[Inﬁnlte VOlume llmlt L = OO] Lin et.al.(2001),CP-PACS(2005),Yamazaki and Kuramashi(2017)

e Scattering amplitude H (p; k) is obtained by BS wave function ¢(x; k)

{» The integral range can be changed from oo to finite interaction
range R, if (A + k?)p(x;k) =0 for z > R
.. Lattice simulation for H(p; k) is possible, if R < L/2

<> NB. we consider I = 2 S-wave two-pion in the center of mass frame below inelastic
threshold. Overall factors are omitted for simplicity.
¢(x;k) = (O]lryp(x/2)m2(—=%x/2)[71 (k)7 (—k);in)

3 .
eik'x _|_/ d°p H(p; k) eip'x
(2m)3 p2 — k2 — je

+ (inelastic part),
C H(p: . o 3 —ip-x 2 )
. H(p; k) = —/ d°x e (A—{—k:)qb(x,k)
— oo
= — /Rd3:1: e TIPX (A + k:2) ¢(x; k),
—R

where (A + k2) ¢(x;k) =0 for = > R
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[Infinite volume limit L = oo(continued)]

e Once H(p; k) at on-shell p = k is obtained, we can extract the scatter-

ing phase shift §(k), and the scattering length ayo.

¢ Lattice simulation of H (k; k) inside interaction range R gives (k)

¢ NB. H(k; k) is removed in the final form of Liischer formula
— ”Please keep H(k; k). H(k;k) also has scattering info.”

H(k;k) = %ei(s(k)sin(ﬂk)
ag = tand(k)/k + O(k?)

[Quick derivation on Liischer formula(omitting some overall factors for simplicity)]

P(x; k) ﬁ vooG(x; k), G(x;k) : solution of (A + k:2)qb(x; k) =0
x

— Cooei5(k) sin(kx 4+ 6(k))/kx 4+ (I > 4 terms), wvgo, Cpo :

Expanding G(x; k) by j;(kx) and ng(kxz) and comparing their coefficients leads to

kcot§(k)CooH(k; k) = 4mvgogoo (k)

Taking a ratio of the above two equations leads to Luscher formula,

k cot 6(k) = 4mggo (k)
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3 Set up of simulation

We use I = 2 7 system in quenched lattice QCD as a test bed
o Iwasaki gauge action at 8 = 2.334(a”"' = 1.207[GeV]) cr-racs(2001.2005)

e Valence Clover quark action with Csw = 1.398

¢ Four random Z(2) sources avoiding Fierz contamination
— Six combinations of two quark propagators
(Wall sources for comparison) + Coulomb gauge fixing

> The number of source positions is 32 i.e. every two time slices

{»> Periodic boundary condition in space, Dirichlet boundary condi-
tion in time

Lattice Kal my |GeV]  Neonfig
243 x 64  0.1340 0.86 200
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[Observable : four-point function (0|®(x,t)|7 7", E)]

e | = 2 two-pion BS wave function ¢(x;k) is defined by a four-point
function (0|®(x,t)|r w1, E) with two-pion operator ®(x,t)

& A_l*_ projection is performed for S-wave in center of mass frame. Owverall factors are
omitted for simplicity.

p(xik) =  (0]®(x, )| nTa T, By)yePkt,
where

P(x,t) = Zr+(RA+ [x] 4+ r, t)7 T (r, ),
r 1

RA_|_ [x] : projector onto Ai|_ cubic group
1

Ej, = 2y/m2 + k2

3
Ap(xs k) = D (d(x+i3k)+ d(x — i3 k) — 2¢(x; k))
=1

: Laplacian on lattices

H(p; k) = — /_Ooood?’m e TIPX (A 4 k2) b (x; k)

) N I<§<L/2€_ip'x (& +5%) 606 k)
X
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4  Result

[Check of plateau of temporal correlators]

o Effective masses of one-pion m® (7) and I = 2 two-pion E{" (77) as
well as AEST = B (rrr) — 2m®® (7r) have plateau in t = [12, 44]
— No fake plateau is observed for our case

eff

m = log(prop(t)/prop(t + 1))
0.861 o+ 1724
208 x 64,3 = 2334, Capy=1.398 | 248 x 64, 3 = 2.334, Cqy = 1.398 "
SwW SwW
0.860 | Ky = 0.13400 ] 17221 . = 0.13400 ]
1.720}
0859f @ 1
B E 1718}
5 08581 T RS SRR iR .l D %_\c 1.716
= o e S w
857}
0.85 + 1714 g
0.856 - + Random Z2 -@-i 17121 Random Z2 -@-|l
Wall -m- L Wall -m-
0.8555—15 15 20 25 30 35 40 45 50 1.7105—1615 20 25 30 35 40 45 50
|t - t(src)| |t - t(src)|

0.0040

24% x 64, B = 2.334, Cg, = 1.398
Kyal = 0.13400

Randem Z2 -@-||

Wall -~

0.00005—71515 20 25 30 35 40 45 50
|t - t(src)|
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[Check of plateau of a ratio of spatial wave functions ¢(x;k)/d(Xret; k)]
e Ratio of wave functions ¢(x; k)/¢(Xrer; k) have plateau in t = [32, 44]

e cf. temporal correlators have plateau in ¢ = [12, 44]

 Larger t is required for wave functions, but still under control

o (x; k) = const X propgpt (x, t)eEkt

¢(X; k)/¢(xref; k) — p?"Op4pt (X, t)/pTOpélpt (xref7 t)

~ 1.15 3 ‘ ‘ ; ; ‘ ;
N 24° x 64, B = 2.334, Cg, = 1.398
™~ 1.10fx  =0134 x=(12,0,0) —e—
o Kyas = 0.13400 x=El0,0,0 -
i 1.05} x=(8,0,0) —=—
><2 x:§6,0,0 —v—
e x=(4,0,0
< 1.0049890e0

"V AAAA“AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
S 0.95 v, 1
& vvvv“'"wwvvwvvvvvvvvvvvvvvv
< 0.90f 1
&
4 085
o
O 0.80

5 10 15 20 25 t 30 35 40 45 50
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[Check of sufficient condition: (A 4+ k*)¢(x;k) =0 for R < x < L/2]

e We confirm R ~ 10, which is consistent with the result by CP-PACS(2005)
— The sufficient condition is satisfied within our statistical errors

0.40 3 : ‘ ‘
035! 24” x 64, 3 =2.334, Cg,y = 1.398
< Kyq = 0.13400
kS 0.30f 0.0008
g 0.25+ 0.0006 |
5 0.20} 0.0004 |
30 . 0.0002 |
|2 0.15¢ 0.0000
< 010
L 0.05f = 100004 8 s 10 11 12 ]
0.00 """" & oo e - - - - - -
-0.055 5 10 » 15 20 25
¢ Reference point x,..¢y = (12,7, 2) is chosen to minimize [ = 4

contribution s.t.

¢(x;k) = (Il =0 term) + (I = 4 term) + ...

Ya0(R , 4 [x0/z0)da(kzo)/ (Yoo (R, 4 [x0/z0Ddo (ko)) < 107°
1 1

: spherical harmonics, j; : spherical Bessel function

Y]

{ Strictly speaking, there must be exp tail, which is below our statistical error
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[Check of sufficient condition: (A 4 k*)¢(x;k) =0 for R < x < L/2 (cont)]

e We also confirm R ~ 10 by Hr(k; k) and ¢(x; k)

Coo H (k; k)

G(x; k) =1

voo G (x; k)

(I have omitted an overall factor Cgq)

for £ > R

k;

R(x) = L >G(X;k)

b (x; k) r>R
where
Hp (kik)i= — > jo(ka)(A + k?)é(x; k)

xc L3

= CooH (k; k)
G(x; k) : a solution of (A + k:2)qb(x; k) =0
Coo» vgo : constants

[Quick derivation on Liischer formula (again,
omitting some overall factors for simplicity)]

x; k —_— voo G(x; k 1.05
¢ (x; k) < 00G (x; k)
= Cooei5(k) sin(kx 4+ 6(k))/kx 1.00
+(l > 4 terms) 0.95 |
X

Expanding G(x; k) by j;(kxz) and ng(kxz) and o 090}
comparing their coefficients leads to

0.85¢

kcot6(k)CooH(k; k) = 4mvgggoo (k) 0.80
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|[Comparison of scattering lengths ag]

® qg is evaluated by Liischer’s formula outside the interaction range,
and by Hp, (k; k) inside the interaction range

> Both results agree well

<> cf. CP-PACS(2005) employs Liischer’s formula with Wall sources

ag/mx = tand(k)/(kmx) + O(k?)

—sin(kx,of)

tan d(k =
(k) AT T af P(Xpef; k) /Hyp, (ks k) + cos(kxof)

— 11 /17 —

ag/ my [GeV?]

-0.80
-0.85

-0.90
-0.95¢+
-1.00 ¢
-1.05¢
-1.10¢
-1.15¢

-1.20

24° x 64, B = 2.334, Cgy, = 1.398

KvaI =

0.13400

from H(k;k) —e—
from Ey

from E,(CP-PACS(2005)) - |




[Additional output: half off-shell scattering amplitude H (p; k)]
e H(p;k) can be estimated by lattice QCD

< H(p; k) can be supplemental input to theoretical models of hadrons

<> NB. H(p; k) / H(k; k) is available below 47 threshold, although there is no true inelastic

threshold in quenched QCD (quenched artificial inelastic effects may appear)

12—5————— . |
24% x 64, p = 2.334, Cgy = 1.398
1.04 Kyq = 0.13400
' 5 < 0.8}
Hp(pik) = — > jo»x)(A+kD)e(xk) =
= ﬁi;
H(p;k)/H(k;k) =  Hp(p;k)/Hy (k;k) S04 *fﬁ;ﬁ!
!!55!
0. !!!!!iu::!;,!““!" |
0.0g 05 i 15 > 2.5
p’[GeV?]

—12 /17 —



[Remark: LSZ reduction formula in momentum space]

e Hr(p;k) can be calculated using LSZ reduction formula in momentum
space, instead of laplacian A. cr. J.Carbonell and V.A.Karmanov(2016)

{ Care is needed. If we cut the integration range of H(p; k) at the
interaction range R, a surface term appears in general.

H(p;k) = —/Ood%e—ip‘xmm%qb(x;k)
— O

R .
— —/ RdS:U e TP XA L D) p(x; k) (A 4+ EDd(x;k) =0 forx > R

(3 partial integration

R .
= (p2 — k:2) /_Rdgw e_Zp'xqb(x; k) + [surface term]ljR

At on-shell(p = k),
H(k; k) = [surface term]l_%R

AT i (k)
k

sin 6 (k) // R dependence vanishes
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[Remark: LSZ reduction formula in momentum space(continued)]

e Hi (p; k) using lattice laplacian A agrees with that using LSZ reduction
formula at p;, = (2n/L)n;,n; € Z with periodic boundary condition,
where (surface term) = 0

Hrp (p; k)

where

L/2 _
— Z e "P¥A 4 kz)qb(x; k) supposing R < L/2
—L/2
L/2 _ 3
— > TIPS (Bt i k) + b(x — i k) — 26(x; k) — K2 (x5 k)
—L/2 i=1
periodic boundary condition: ¢(x; = L/2 + 1; k) = ¢p(x; = —L/2; k)

L/2 3 .
LS TIPS (0PE | TP g k) — k2 g(x: k)

(132 — k2)q§(p; k) i.e. (surface term) = 0

3
_2 > 57 - . 2Pq
p- = P;s P4 = — sin , p; =2n/L)n;, n; €L



[Remark: LSZ reduction formula in momentum space(continued)]

o Hi(p;k) from lattice laplacian A agrees with that using LLSZ reduction
formula at p;, = (27 /L)n;,n; € Z with periodic boundary condition
— Numerically checked to be correct

6.6e-20 3 3.9e-20 3
24” x 64, 3 =2.334, Cgy = 1.398 24” x 64, 3 =2.334, Cgy = 1.398

6.4e-20 1 k. =0.13400 | 38e.00| "va=0:13400
6.2e-20| P=(0.0.0) | p=(1.1.1)

66-20 | i 376-20 I
586'20 B ] 366-20 |
5.6e-20 | 1

H, (p;k) —e— 3.5e-20+ H, (p;k) —e— 1
5.4e-20 | i L(PiK) —e—] i L(P;k)
2 2 2 2
-k 'k -k 'k

5.2e-20 (P ) %pik) 3.4e-20 (P ) %pik)
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5 Summary

We evaluate a scattering length ag of I = 2 77 system in the quenched lattice
QCD using Bethe-Salpeter wave function not only outside the interaction
range but also inside the interaction range

e No fake plateau is observed for our case
e Consistency is checked

¢ Our result of ap using the scattering amplitude inside the in-
teraction range agrees with the value of Liischer’s finite volume
method using data outside the interaction range

e Additional output is obtained

¢ A half off-shell scattering amplitude H(p;k) can be estimated
by lattice QCD, which can be supplemental input to theoretical
models of hadrons
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|[Future work]
Apply our strategy to

e More realistic case (ex. Ny = 2+ 1 full QCD on the physical point)

e More complicated system ( other 2-body system with not only up,down,
strange but also charm quarks, and hopefully 3-body system)
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