Hadron resonances and bound states with heavy quarks

Daniel Mohler

Seattle. February 5th, 2018

Daniel Mohler (HIM)

Resonances and bound states with heavy quarks

- ₹ 🖻 🕨 Seattle, February 5th, 2018 1/29

1 = nan

15 years after the X(3872), $D_{s0}^*(2317)$: Many new puzzles

Daniel Mohler (HIM)

Resonances and bound states with heavy quarks

Motivation vs. lattice reality

• Goal: Learn about the nature of exotic hadrons with heavy quarks

The purpose of computing is insight, not numbers

- Richard Hamming

- Hindered by lattice systematics
 - Need to take the *continuum limit*: $a(g,m) \rightarrow 0$
 - Want to exploit (power law) finite volume effects (while keeping exponential effects small)
 - Need to calculate at (or extrapolate to) the physical pion mass
- So far: *exploratory* results for the spectrum (often single pion mass/ lattice spacing)
 - Should be compared only qualitatively to experiment
 - Provide an outlook on future Lattice QCD results
 - To learn about structure, more complicated observables needed (transitions)

くロット (四) (モット (ヨット (日))

Assignments from the organizers

- Review numerical scattering results with heavy flavors
- Will use the examples below for illustration
 - D_s and B_s results
 - Results for the X(3872)
 - χ_{c0}^\prime / X(3915)
 - Search for charged charmonium-like Z_c
- Technical issues: Heavy-quark discretization effects
- Prospects and challenges for approaching the physical point
- Importance/construction of interpolator basis
- Outlook

Disclaimers:

- In this talk I will not cover HALQCD results
- I will not cover explicitly exotic mesons with $\bar{b}\bar{b}$

The landscape of lattice simulations

A = A = A = A = A < A
</p>

< A

The landscape of lattice simulations

CLS 2+1 flavor ensembles: Overview

Bruno et al. JHEP 1502 043 (2015); Bali et al. PRD 94 074501 (2016)

plots by Jakob Simeth, RQCD

• Ensembles at 5 lattice spacings and with a range of $M_{\pi} \leq 420 \text{MeV}$

• Ensembles to control (or exploit) finite volume effects

Daniel Mohler (HIM)

Resonances and bound states with heavy quarks

CLS 2+1 flavor ensembles: Volumes used

Bruno et al. JHEP 1502 043 (2015); Bali et al. PRD 94 074501 (2016)

plots by Jakob Simeth, RQCD

- red: $m_{\pi}L \leq 4$; yellow: $4 \leq m_{\pi}L \leq 5$; green $5 \leq m_{\pi}L$
- Most ensembles with $m_{\pi}L \geq 4$
- Some smaller volumes to check finite size effects

Daniel Mohler (HIM)

ELE DQA

Analysis of discretization effects

• For Wilson-like actions: Qualitative understanding of heavy quark discretization effects in the Fermilab method

```
El-Khadra et al., PRD 55,3933
```

```
Oktay & Kronfeld, PRD 78 014504 (2008)
```

- Provides insights not only when the Fermilab method is followed
- Strategy followed by Fermilab/MILC
 - Take tadpole improved tree-level value for c_B
 - On each ensemble, tune a meson kinetic mass/ combination of masses to be physical
 - Procedure removes large discretization effects in the kinetic energy
 - Results in close-to-physical mass splittings
- Relativistic heavy quark action

```
Aoki et al. Prog. Theor. Phys. 109 383 (2003)
```

- Tune all action parameters, in particular keep two hopping parameters and tune dispersion relation
- More involved tuning
- For question, please refer to S. Aoki and Y. Namekawa

Discretization effects - dispersion relation

• General form for the dispersion relation

Bernard et al. PRD83:034503,2011

$$E(p) = M_1 + \frac{p^2}{2M_2} - \frac{a^3 W_4}{6} \sum_i p_i^4 - \frac{(p^2)^2}{8M_4^3} + \dots$$

• Example for 2+1 flavor PACS-CS ensemble with $M_{\pi} \approx 156 \text{MeV}$

spin average	$\overline{c}c$	D_s	D
M_1	1.20438(15)	0.84606(28)	0.80466(137)
M_2	1.4073(59)	0.9336(105)	0.884(50)
M_4	1.270(63)	0.959(71)	0.98(38)
$\frac{M_2}{M_1}$	1.1685(49)	1.1035(122)	1.099(61)
$M_2[GeV]$	3.062(13)(44)	2.031(23)(39)	1.923(108)(28)
Exp [GeV]	3.06861(18)	2.07635(38)	1.97512(12)

• Naive application of Lüscher method problematic (moving frames!)

Discretization effects - mass mismatches

Plot from PRD 78 014504 (2008)

- charm: red; bottom: blue
- lines for unimproved/ tree level/ 1 loop

- Relative error compared to $\Lambda / m_Q v^2$
- vanish as a power of *a* for $am_Q \ll 1$
- in many cases: smaller discretization effects for bottom
 - static approximation better for b
 - NRQCD better for $\bar{b}b$
- For charm: Largish discretization effects everywhere
- Anisotropic lattices alone do not help for spin-splittings

Exotic D_s and B_s candidates

Established s and p-wave D_s and B_s hadrons:

 $D_s (J^P = 0^-) \text{ and } D_s^* (1^-)$ $D_{s0}^* (2317) (0^+), D_{s1} (2460) (1^+),$ $D_{s1} (2536) (1^+), D_{s2}^* (2573) (2^+)$

$$B_s (J^P = 0^-)$$
 and $B_s^* (1^-)$
 $B_{s1}(5830) (1^+), B_{s2}^*(5840) (2^+)$

• Corresponding $D_0^*(2400)$ and $D_1(2430)$ are broad resonances

- Peculiarity: $M_{c\bar{s}} \approx M_{c\bar{d}} \rightarrow$ exotic structure? (tetraquark, molecule)
- B_s cousins of the $D_{s0}^*(2317)$ and $D_{s1}(2460)$ not (yet) seen in experiment
- The LHCb experiment at CERN should be able to see these

11/29

Exotic D_s and B_s candidates

Established s and p-wave D_s and B_s hadrons:

 $D_{s} (J^{P} = 0^{-})$ and $D_{s}^{*} (1^{-})$ $B_s (J^P = 0^-)$ and $B_s^* (1^-)$ $D_{s0}^{*}(2317)(0^{+}), D_{s1}(2460)(1^{+}),$? $B_{s1}(5830) (1^+), B_{s2}^*(5840) (2^+)$ $D_{s1}(2536)(1^+), D_{s2}^*(2573)(2^+)$

- Corresponding $D_0^*(2400)$ and $D_1(2430)$ are broad resonances
- Peculiarity: $M_{c\bar{s}} \approx M_{c\bar{d}} \rightarrow$ exotic structure? (tetraquark, molecule)
- B_s cousins of the $D_{s0}^*(2317)$ and $D_{s1}(2460)$ not (yet) seen in experiment
- The LHCb experiment at CERN should be able to see these

11/29

$D_{s0}^{*}(2317)$: D-meson – Kaon s-wave scattering

M. Lüscher Commun. Math. Phys. 105 (1986) 153; Nucl. Phys. B 354 (1991) 531; Nucl. Phys. B 364 (1991) 237.

Charm-light hadrons

$$p \cot \delta_0(p) = \frac{2}{\sqrt{\pi L}} Z_{00} \left(1; \left(\frac{L}{2\pi} p \right)^2 \right)$$
$$\approx \frac{1}{a_0} + \frac{1}{2} r_0 p^2$$

Mohler *et al.* PRL 111 222001 (2013) Lang, DM *et al.* PRD 90 034510 (2014)

Results for ensembles (1) and (2)

 $a_0 = -0.756 \pm 0.025 \text{fm}$ (1) $r_0 = -0.056 \pm 0.031 \text{fm}$ (2)

$$a_0 = -1.33 \pm 0.20$$
 fm (2)

$$r_0 = 0.27 \pm 0.17$$
 fm

Resonances and bound states with heavy quarks

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の Q (P)

$D_{s0}^{*}(2317)$: D-meson – Kaon s-wave scattering

M. Lüscher Commun. Math. Phys. 105 (1986) 153; Nucl. Phys. B 354 (1991) 531; Nucl. Phys. B 364 (1991) 237.

Charm-light hadrons

$$p \cot \delta_0(p) = \frac{2}{\sqrt{\pi}L} Z_{00} \left(1; \left(\frac{L}{2\pi} p \right)^2 \right)$$
$$\approx \frac{1}{a_0} + \frac{1}{2} r_0 p^2$$

Mohler et al. PRL 111 222001 (2013) Lang, DM et al. PRD 90 034510 (2014)

Results for ensembles (1) and (2)

 $a_0 = -0.756 \pm 0.025 \text{fm} \quad (1)$ $r_0 = -0.056 \pm 0.031 \text{fm}$ $a_0 = -1.33 \pm 0.20 \text{fm} \quad (2)$ $r_0 = 0.27 \pm 0.17 \text{fm}$

Daniel Mohler (HIM)

Resonances and bound states with heavy quarks

B_{s0}^* and B_{s1} : Results

Lang, Mohler, Prelovsek, Woloshyn PLB 750 17 (2015)

• Energy from the difference to the $B^{(*)}K$ threshold

Daniel Mohler (HIM)

13/29

EL SAR

D_s and B_s : Spectrum results

Mohler et al. PRL 111 222001 (2013) Lang, Mohler et al. PRD 90 034510 (2014)

Lang, Mohler, Prelovsek, Woloshyn PLB 750 17 (2015)

- Discretization uncertainties sizeable for charm
- Many improvements possible for the *D_s* states
- Full uncertainty estimate only for magenta *B_s* states
- Prediction of exotic states from Lattice QCD!

Daniel Mohler (HIM)

Positive parity D_s : More comprehensive results from RQCD

Bali, Collins, Cox, Schäfer, arXiv:1706.01247

- Study with different volumes at pion masses of 150, 290 MeV
- Remaining discretization effects non-negligible
- Caution: Qualitative agreement but different discretization effects expected!

Positive parity D_s : More comprehensive results from RQCD

Bali, Collins, Cox, Schäfer, arXiv:1706.01247

- Study with different volumes at pion masses of 150, 290 MeV
- Remaining discretization effects non-negligible
- Caution: Qualitative agreement but different discretization effects expected!

Coupled-channel study of $D\pi$, $D\eta$, D_sK scattering

Moir et al., JHEP 1610 011 (2016) for more coupled channel results see D. Wilson

- Lattice data from multiple volumes at $m_{\pi} = 391 \text{ MeV}$
- Shallow bound state seen in coupled channel s-wave
- Narrow spin-2 D-wave resonance seen as well
- For older single-channel results see

DM, Prelovsek, Woloshyn PRD 87 034501 (2013) ~

An X(3872) candidate from Lattice QCD

- Neglects charm annihilation and $J/\psi\omega$
- Seen only when $\bar{q}q$ and \bar{D}^*D are used
- The two simulations have vastly different systematics (yet results are similar)

-

An X(3872) candidate from Lattice QCD II

Padmanath, Lang, Prelovsek, PRD 92 034501 (2015)

- Without $\bar{q}q$ interpolators signal vanishes
- Simulations still unphysical in many ways
- Discretization and finite volume effects sizable!

• Makes interpretation as pure molecule or pure tetraquark unlikely

Search for a Z_c^+ state from Lattice QCD

Prelovsek, Lang, Leskovec, DM, Phys.Rev. D91 014504 (2015)

- Search for a Z_c^+ in the $I^G J^{PC} = 1^+ 1^{+-}$ channel
- Aim at simulating all meson-meson states below $\approx 4.3 \text{GeV}$
- Caveat: Neglects 3-particle states
- Include tetraquark interpolators of type $3_c \times \overline{3}_c$
- Count energy levels and identify them according to their overlaps
- Hope: See an extra level, as would be expected for a (narrow) resonance

More rigorous approach (a la Lüscher) quite challenging

- Coupled channel system with many channels
- Small shifts in finite volume and (largish) discretization effects
- Thresholds should be close to physical
- Suitable ensembles are (probably) not available at the moment.

A look at the spectrum of scattering states

• Expect level close to non-interacting scattering states

Search for Z_c^+ with $I^G J^{PC} = 1^+ 1^{+-}$

X(3900)

 $I^{G}(J^{PC}) = 1^{+}(1^{+})^{-}$

 $\begin{array}{l} \mbox{Mass } m = 3886.6 \pm 2.4 \mbox{ MeV} \quad (\mbox{S} = 1.6) \\ \mbox{Full width } \Gamma = 28.1 \pm 2.6 \mbox{ MeV} \end{array}$

Prelovsek, Lang, Leskovec, DM, Phys.Rev. D91 014504 (2015)

- Simple level counting approach
- We find 13 two meson states as expected
- We find no extra energy level that could point to a Z_c candidate

Daniel Mohler (HIM)

E + 4 E + E = 900

 χ'_{c0} and X/Y(3915)

$$I^{G}(J^{PC}) = 0^{+}(0 \text{ or } 2^{++})$$

PDG interpreted X(3915) as a regular charmonium (χ'_{c0})

 $\begin{array}{l} {\sf Mass} \ m=3918.4\pm 1.9 \ {\sf MeV} \\ {\sf Full \ width} \ \Gamma=20\pm 5 \ {\sf MeV} \quad ({\sf S}=1.1) \end{array}$

• Some of the reasons to doubt this assignment:

Guo, Meissner Phys. Rev. **D**86, 091501 (2012) Olsen, PRD 91 057501 (2015)

- No evidence for fall-apart mode $X(3915) \rightarrow \overline{D}D$
- Spin splitting $m_{\chi_{c2}(2P)} m_{\chi_{c0}(2P)}$ too small
- Large OZI suppressed $X(3915) \rightarrow \omega J/\psi$
- Width should be significantly larger than $\Gamma_{\chi_{c2}(2P)}$
- Zhou *et al.* (PRL 115 2, 022001 (2015)) argue that what is dubbed X(3915) is the spin 2 state already known and suggests that a broader state is hiding in the experiment data.
- Observation of an alternative χ_{c0}(2P) by Belle: Chilikin *et al.* PRD 95 112003 (2017)

$$M = 3862^{+26+40}_{-32-13} \text{ MeV} \qquad \Gamma = 201^{+154+88}_{-067-82} \text{ MeV}$$

χ'_{c0} : Exploratory lattice calculation

Lang, Leskovec, DM, Prelovsek, JHEP 1509 089 (2015)

- Assumes only $\overline{D}D$ is relevant
- Lattice data suggests a fairly narrow resonance with 3.9 GeV < M < 4.0 GeV and $\Gamma < 100 \text{MeV}$
- Future experiment and lattice QCD results needed to clarify the situation

23/29

χ_{c0}^{\prime} : Improvements and challenges

with G. Bali, S. Collins, M. Padmanath, S. Piemonte, S. Prelovsek

Improvements:

- High-precision determinations of the energy splittings needed
 → significantly improve statistics by using CLS ensembles
- Bigger density of energy level needed
 - \rightarrow Calculation in multiple volumes: CLS ensembles U101, H105, N101
 - \rightarrow Add information from moving frames
- Treatment as a single-channel problem only sensible if X(3915) is indeed a spin-2 state
 - ightarrow consider coupled channel $D\bar{D}$, $J/\psi\omega$ and $D_s\bar{D}_s$

Challenges:

- Need strategy for dealing with (largish) discretization effects
- $Tr(M) = \text{const. trajectory means } D_s \overline{D}_s$ threshold lower

Interpolator basis

$$A_1^{++}$$
 $(J^{PC} = 0^{++}, 4^{++}, \ldots)$

Label n	Operator	
0	$\bar{q} q$	
1	$ar{q} \ \gamma_i \overline{ abla}_{i} \ q$	
2	$\bar{q} \gamma_i \gamma_t \overline{\nabla}_i q$	
3	$\bar{q} \overleftarrow{\nabla}_i \overrightarrow{\nabla}_i q$	
4	$\bar{q} \Delta \Delta q$	
5	$\bar{q}_i \overleftarrow{\Delta} \gamma_i \overrightarrow{\nabla}_i q$	
6	$\bar{q} \overleftarrow{\Delta} \gamma_i \gamma_t \overrightarrow{\nabla}_i q$	
7	$O^{\bar{D}(0)D(0)} \sim \bar{c}\gamma_5 l \bar{l}\gamma_5 c$	
8	$O^{\bar{D}(0)D(0)} \sim \bar{c}\gamma_5\gamma_t l\bar{l}\gamma_5\gamma_t c$	
9	$O^{\bar{D}(p)D(-p)} \sim \bar{c}\gamma_5 l \bar{l}\gamma_5 c$	
10	$O^{\bar{D}^*(0)D^*(0)} \sim \bar{c}\gamma_i l \bar{l}\gamma_i c$	
11	$O^{\bar{D}^*(0)D^*(0)} \sim \bar{c}\gamma_i\gamma_t l\bar{l}\gamma_i\gamma_t c$	
12	$O^{J/\psi(0)\omega(0)} \sim \bar{c}\gamma_i c \bar{l}\gamma_i l$	
13	$O^{J/\psi(0)\omega(0)} \sim \bar{c}\gamma_i\gamma_t c \bar{l}\gamma_i\gamma_t l$	
14	$O^{ar{D}_s(0)D_s(0)}\simar{c}\gamma_5sar{s}\gamma_5c$	
15	$O^{\bar{D}_s(0)D_s(0)} \sim \bar{c}\gamma_5\gamma_t s \bar{s}\gamma_5\gamma_t c$	

Seattle, February 5th, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣旨 のへで

25/29

A first look at mass splittings

Preliminary results: Energy splittings from 120 configurations of U101

	$\kappa_c = 0.12522$	$\kappa_c = 0.12315$	Experiment
$m_{J/\Psi} - m_{\eta_c}$	106.9(0.6)(1.1)	98.0(0.5)(1.1)	113.2(0.7)
$m_{D_s^*} - m_{D_s}$	131.3(1.9)(1.4)	118.4(2.0)(1.3)	143.8(0.4)
$m_{D^*} - m_D$	127.8(3.9)(1.4)	115.1(4.1)(1.2)	140.66(10)
$2m_{\overline{D}} - m_{\overline{cc}}$	912.0(7.6)(9.8)	939.7(8.1)(10.1)	882.4(0.3)
$2M_{\overline{D_s}} - m_{\overline{c}\overline{c}}$	1011.7(4.2)(10.9)	1036.0(4.5)(11.1)	1084.8(0.6)
$m_{D_s} - m_D$	47.2(2.1)(0.5)	45.7(2.2)(0.5)	98.87(29)

• Unphysical $m_{D_s} - m_D$ creates a special challenge!

Challenge: Discretization effects

- Naive simulation at small lattice spacings
 - Requires large lattices
- Anisotropic lattices
 - does not address discretization effects in spin-splittings
 - does not avoid topological freezing (effect on η - η' system?)
- Fermilab interpretation a la Fermilab/MILC
 - Need to deal with non-standard dispersion relation
 - Does not replace testing continuum scaling
- Relativistic heavy quark action with non-perturbative tuning
 - As above but with different complications
- Brillouin fermions and the overlap action

```
Dürr & Koutsou, PRD 83 114512 (2011)
Dürr & Koutsou, arXiv:1701.00726
```

- Brillouin fermions show a very good momentum dependence
- Still issues with $M_1 \neq M_2$
- Use as an overlap kernel may be an expensive option

A = A = A = A = A = A

Challenge: Statistical accuracy

- Lüscher method relies on statistically significant finite volume shifts to constrain models for the scattering amplitude(s)
- Exponentially suppressed volume effects must be small
- Example: Expected energy levels

 $A1^{++}$ rest frame for χ'_{c0} on CLS-ensembles U101, H105, N101

• Brings (stochastic) distillation to its limits (volume scaling!)

Daniel Mohler (HIM)

Resonances and bound states with heavy quarks

Outlook

Some powerful QCD tools:

- Can map out the quark mass dependence of amplitudes
 - heavy quark-mass dependence of a X(3872) pole?
 - do bottom analogues of charm-quark states exist?
- Can investigate properties of short-lived excitations
- Can investigate states hard to produce/detect at current facilities
- Can calculate simple obsevables directly
- Can test model predictions
- Can use EFT results to relate to experiment
- Don't just calculate numbers

Thank you!

Daniel Mohler (HIM)

Resonances and bound states with heavy quarks

Seattle, February 5th, 2018

30/29

Testing our tuning: charm and beauty

	Ensemble (1)	Ensemble (2)	Experiment
$m_{J/\Psi} - m_{\eta_c}$	107.9(0.3)(1.1)	107.1(0.2)(1.5)	113.2(0.7)
$m_{D_s^*} - m_{D_s}$	120.4(0.6)(1.3)	142.1(0.7)(2.0)	143.8(0.4)
$m_{D^*} - m_D$	129.4(1.8)(1.4)	148.4(5.2)(2.1)	140.66(10)
$2m_{\overline{D}} - m_{\overline{cc}}$	890.9(3.3)(9.3)	882.0(6.5)(12.6)	882.4(0.3)
$2M_{\overline{D_s}} - m_{\overline{cc}}$	1065.5(1.4)(11.2)	1060.7(1.1)(15.2)	1084.8(0.6)
$m_{D_s} - m_D$	96.6(0.9)(1.0)	94.0(4.6)(1.3)	98.87(29)
$m_{B^*} - m_B$	-	46.8(7.0)(0.7)	45.78(35)
$m_{B_{s^*}} - m_{B_s}$	-	47.1(1.5)(0.7)	$48.7^{+2.3}_{-2.1}$
$m_{B_s} - m_B$	-	81.5(4.1)(1.2)	87.35(23)
$m_Y - m_{\eta_b}$	-	44.2(0.3)(0.6)	62.3(3.2)
$2m_{\overline{B}}-m_{\overline{b}\overline{b}}$	-	1190(11)(17)	1182.7(1.0)
$2m_{\overline{B_s}} - m_{\overline{b}}$	-	1353(2)(19)	1361.7(3.4)
$2m_{B_c}-m_{\eta_b}-m_{\eta_c}$	-	169.4(0.4)(2.4)	167.3(4.9)

- Errors statistical and scale setting only
- Bottom quark slightly to light

EL OQO

31/29

< 口 > < 同

A (by now) obvious lesson about the interpolator basis

• The original plateau crisis

A diverse interpolator basis is vital to determine the true spectrum!

Data from Mohler et al. PRL 111 222001 (2013)

32/29