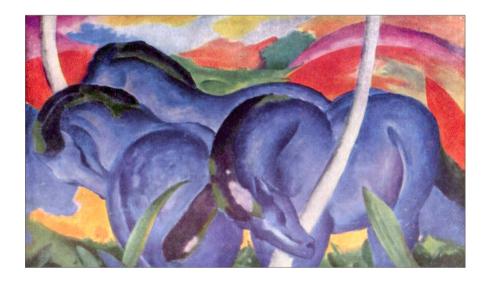
3→3 SCATTERING AMPLITUDE IN ISOBAR FORMULATION



Maxim Mai The George Washington University

Deutsche Forschungsgemeinschaft

INTRODUCTION

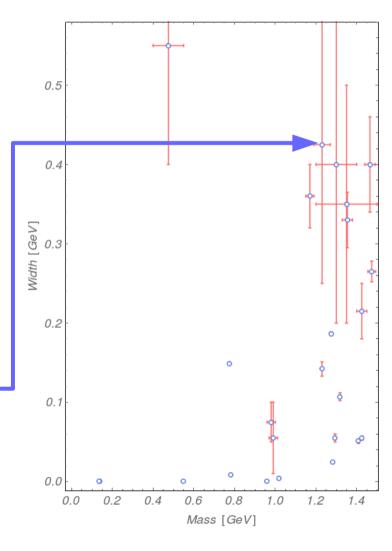
INTRODUCTION

• Non-perturbative dynamics of QCD \rightarrow rich spectrum of excited states

Q1: how many are there? missing resonances Q2: what are they? quark-antiquark, gluons, meson-baryon dynamics

• Many states couple strongly to 3-body channels

 \rightarrow e.g. N*(1440), a1(1260) -

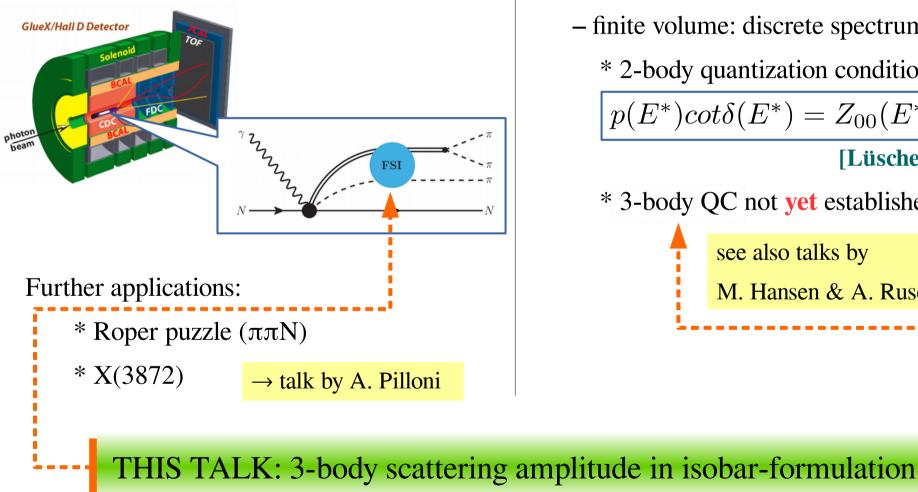


DATA

Experiment

Search for QCD exotics GlueX @ Jlab

* a1(1260) in FSI



Ab-initio numerical calculations

- Euclidean ST & finite lattice spacing
- finite volume: discrete spectrum $\{E^*\}$

* 2-body quantization condition

 $p(E^*)cot\delta(E^*) = Z_{00}(E^*)$

[Lüscher (1986)]

* 3-body QC not yet established

see also talks by

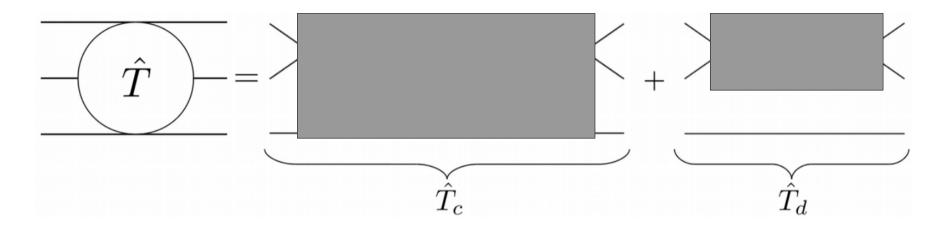
M. Hansen & A. Rusetsky

3→3 SCATTERING AMPLITUDE: INFINITE VOLUME

[MM, Hu, Döring, Pilloni, Szczepaniak EPJ A53 (2017)]

*T***-MATRIX**

- 3 asymptotic states (scalar particles of equal mass (*m*))
- *Connectedness structure* of matrix elements: (all permutations considered)



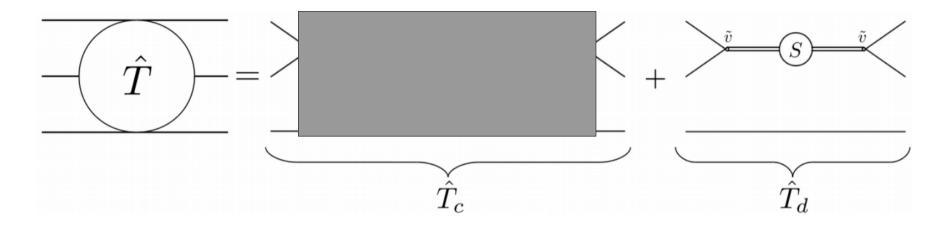
• isobar-parametrization of two-body amplitude

[Bedaque, Griesshammer (1999)]

 \rightarrow "isobars" ~ $S(M_{inv})$ for definite QN & correct r.h.-singularities

*T***-MATRIX**

- 3 asymptotic states (scalar particles of equal mass (*m*))
- *Connectedness structure* of matrix elements: (all permutations considered)



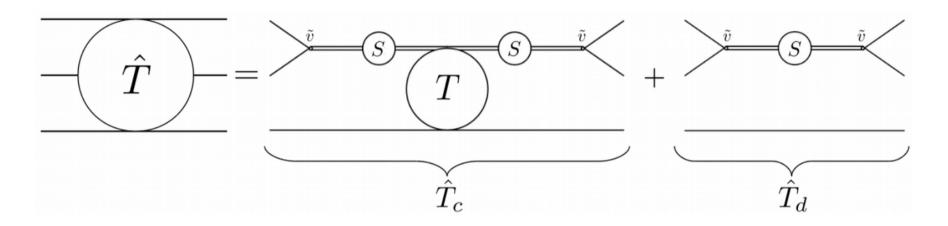
• isobar-parametrization of two-body amplitude

[Bedaque, Griesshammer (1999)]

- \rightarrow "isobars" ~ $S(M_{inv})$ for definite QN & correct r.h.-singularities
- \rightarrow coupling to asymptotic states: cut-free-function v(q,p)

*T***-MATRIX**

- 3 asymptotic states (scalar particles of equal mass (*m*))
- *Connectedness structure* of matrix elements: (all permutations considered)



• isobar-parametrization of two-body amplitude by

[Bedaque, Griesshammer (1999)]

 \rightarrow "isobars" ~ $S(M_{inv})$ for definite QN & correct r.h.-singularities

 \rightarrow coupling to asymptotic states: cut-free-function v(q,p)

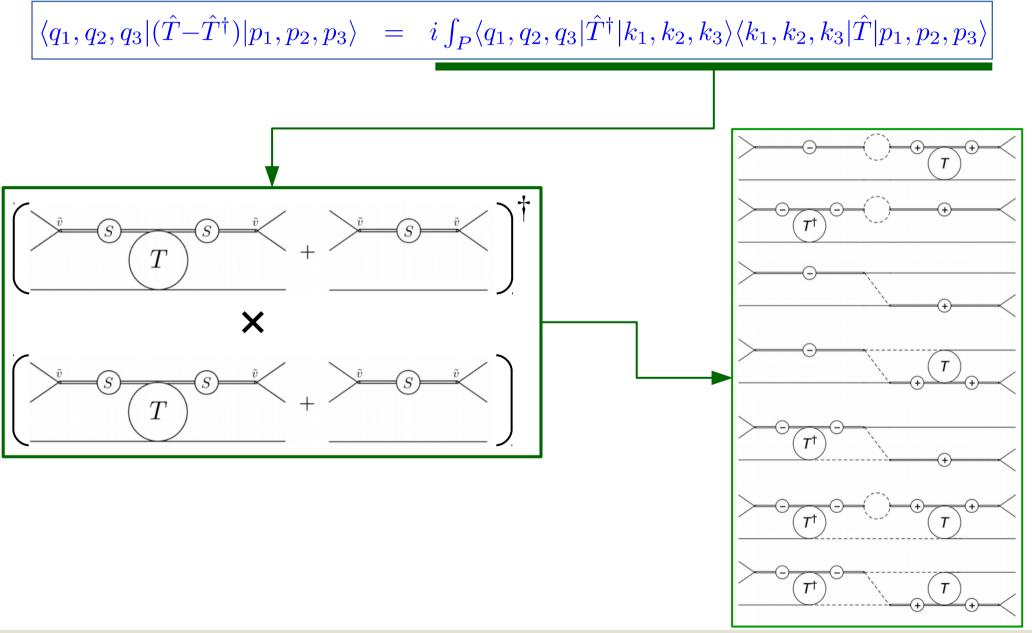
• Connected part: due to isobar-spectator interaction $\rightarrow T(q_{in}, q_{out}; s)$

 \rightarrow 3 unknown functions

 \rightarrow 8 kinematic variables (talk by A. Jackura)

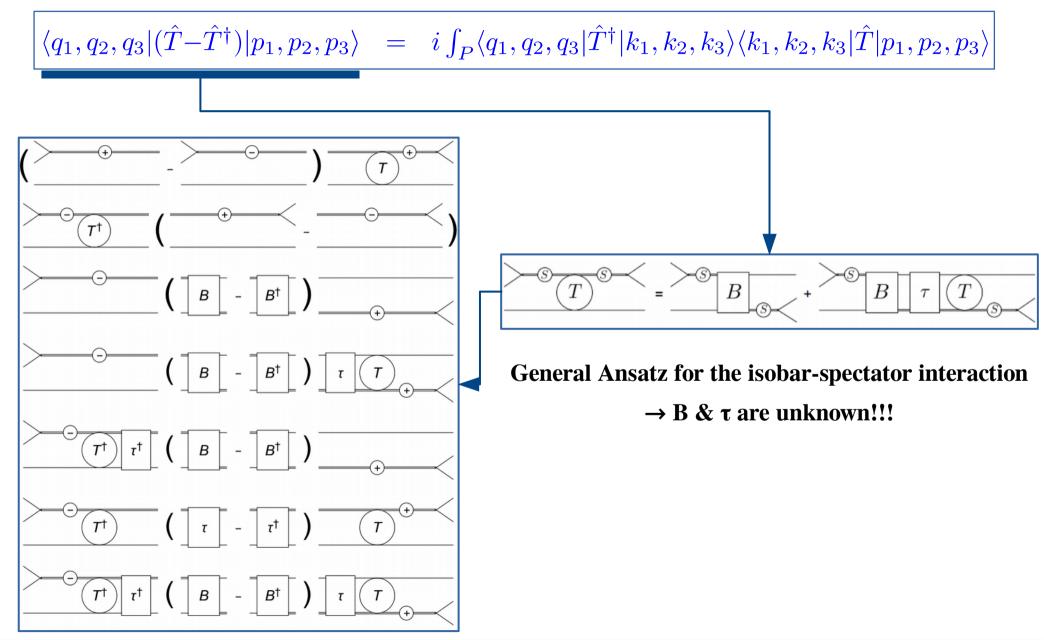
UNITARITY

3-body Unitarity (normalization condition ↔ phase space integral)



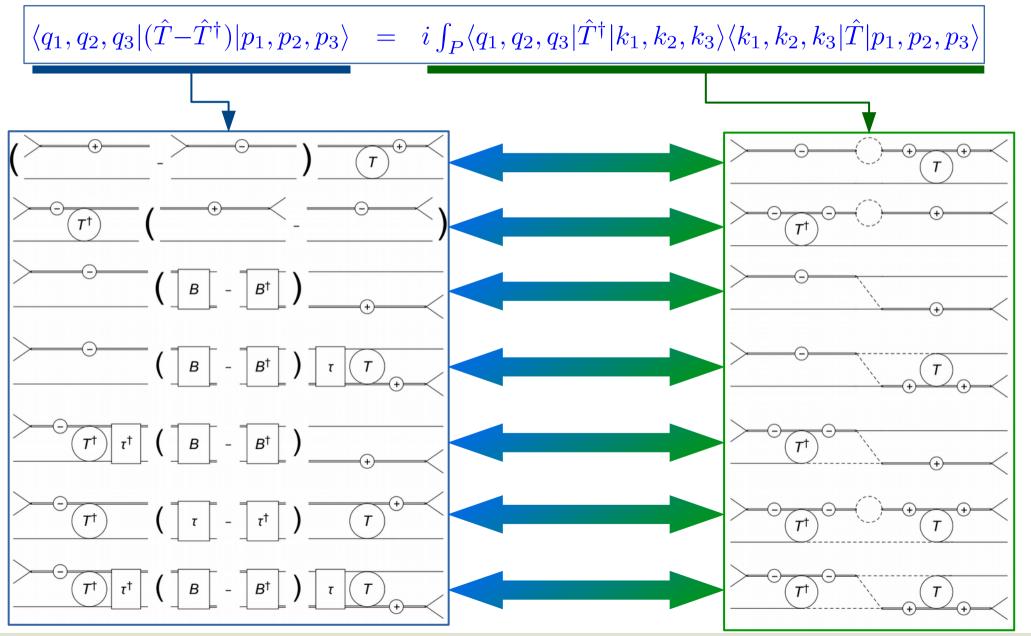
UNITARITY

3-body Unitarity (normalization condition ↔ phase space integral)



UNITARITY

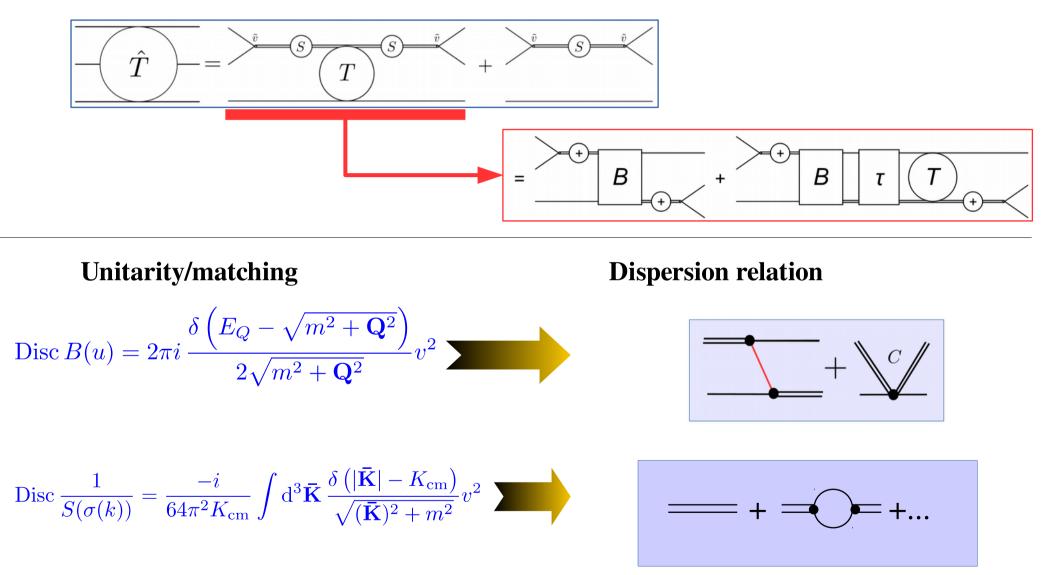
3-body Unitarity (normalization condition ↔ phase space integral)



Maxim Mai (GWU)

INTEGRAL EQUATION

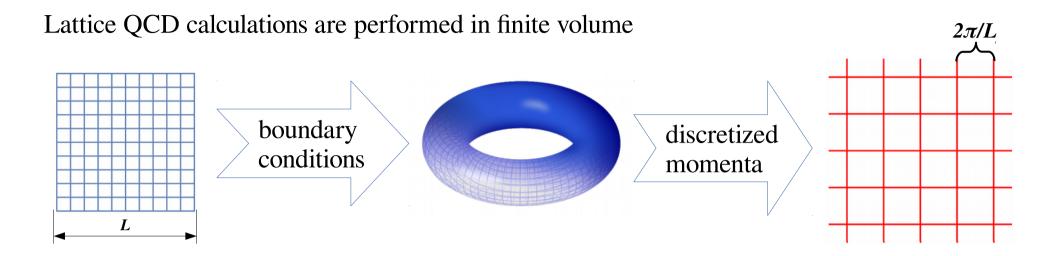
 $3 \rightarrow 3$ scattering amplitude as a 3-dimensional integral equation



THE ONLY IMAGINARY PARTS REQUIRED BY 3b UNITARITY

3→3 SCATTERING AMPLITUDE: HNFINITE VOLUME

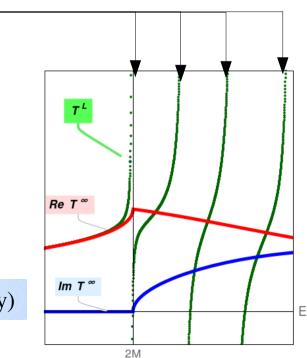
[MM & Döring EPJ A53 (2017)]

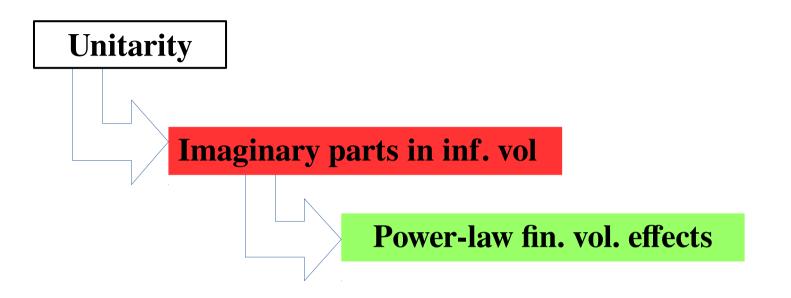


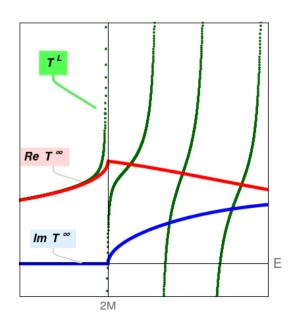
momenta & spectra are discretized

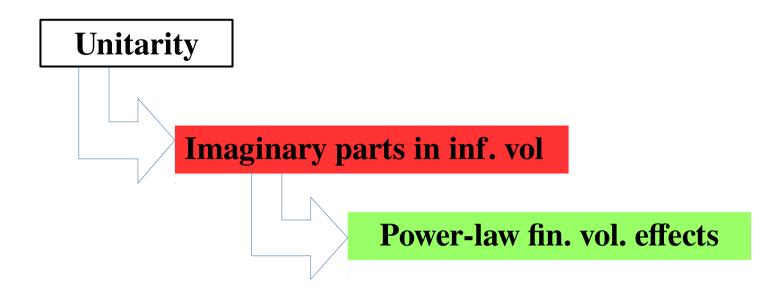
- replace $\int \frac{d^3 \mathbf{q}}{(2\pi)^3} \to \frac{1}{L^3} \sum_{\vec{n} \in Z^3}$
- LSZ formalism relates Greens fct. & S-matrix
 - $\rightarrow 1/T(E^*) = 0 \leftrightarrow E^* \in \text{energy-eigenvalues}$
- well established in 2-body

 \rightarrow R. Molina's talk on rho/sigma(Thursday)

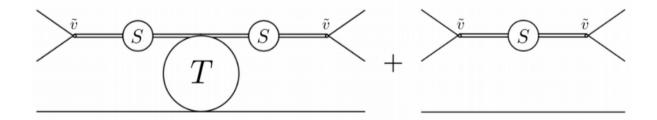


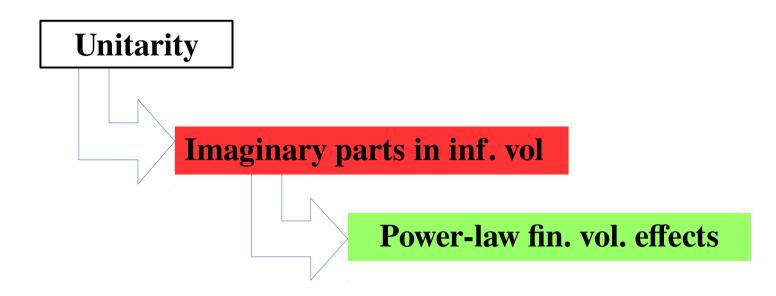




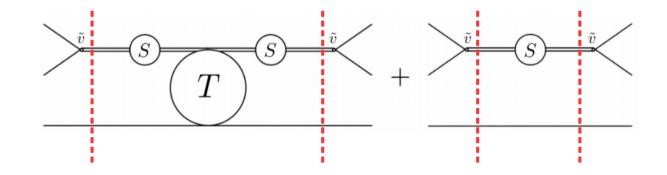


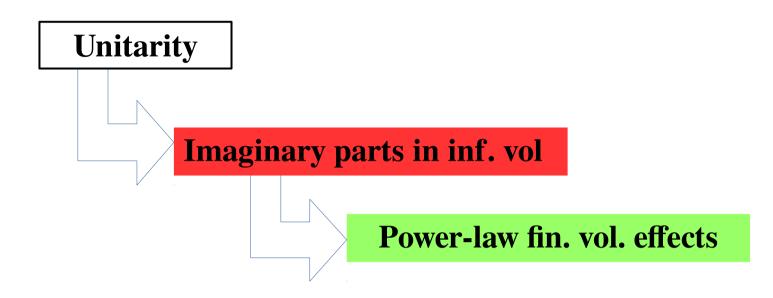
Discretize 3b-scattering amplitude → **3b Quantization Condition**





Discretize 3b-scattering amplitude → **3b Quantization Condition**



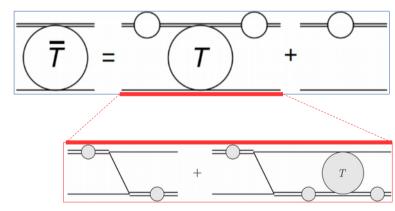


Discretize 3b-scattering amplitude → **Quantization Condition**

 $\rightarrow \mathbf{v}$ is cut-free

 \rightarrow matrix-equation in $q_{in} q_{out}$

$$\bar{T}(s) = \infty \quad \Leftrightarrow \quad \operatorname{Det}\Big[\tau(s)^{-1} + \frac{B(s)}{2E(s)}\Big]_{q_{in},q_{out}} = 0$$



QUANTIZATION CONDITION

$$Det \left[\tau(s)^{-1} + \frac{B(s)}{2E(s)} \right]_{q_{in}, q_{out}} = 0$$

- high-dimensional problem \rightarrow separate variable / use symmetry
 - $-SO(3) \rightarrow O_h$ (octahedral group)
 - $Y_{lm}(\theta, \varphi)$ not a basis of functional space (**PWA**)
- actual Lattice QCD calculations determine energy spectrum for irreps separately

- irreps of cubic group A_{p} , A_{2} , E, T_{p} , T_{2}

 \rightarrow projection to irreps is vital!

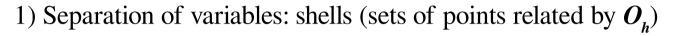
PROJECTION TO IRREPS

work with Pang, Hammer, Rusetsky, Doring, Wu, MM in preparation

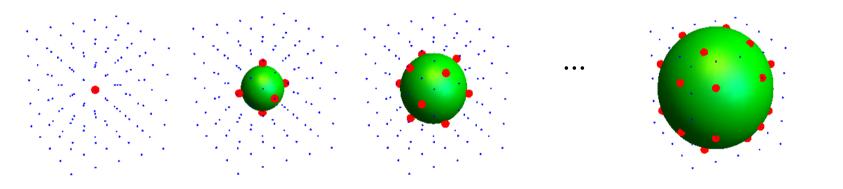
 $|\mathbf{r}|^2 = 6 | \theta = 24$

 \rightarrow see also talk by A. Rusetsky

I. ON-basis of functions



 $|\mathbf{r}|^2 = 0 | \theta = 1$ $|\mathbf{r}|^2 = 1 | \theta = 6$ $|\mathbf{r}|^2 = 2 | \theta = 12$



2) Multiple spheric harmonics contribute to a given irrep

 $\rightarrow l$ is not a good quantum number in finite volume

 \rightarrow cubic harmonics: $X_{\ell}^{\Gamma\nu\alpha}(\mathbf{\hat{p}}) = \sum c_{\ell m}^{\Gamma\nu\alpha} Y_{\ell m}(\mathbf{\hat{p}})$

PROJECTION TO IRREPS

I. ON-basis of functions ...

3) Construct a maximal set of linear indep. cubic harmonics \rightarrow depends on the shell type

 $\rightarrow \text{ for each shell type:} \quad 000 \quad 00b \quad 0bb \quad bbb \quad 0bc \quad bbc \quad bcd$ $\rightarrow \text{ number of elements:} \quad 1 \quad 6 \quad 12 \quad 24 \quad 8 \quad 24 \quad 48$

4) Ortho-normalize (3) w.r.t $\langle f, g \rangle_s = \frac{4\pi}{\vartheta(s)} \sum_{j=1}^{\vartheta(s)} f(\hat{\mathbf{p}}_j)^* g(\hat{\mathbf{p}}_j) \longrightarrow \text{depends on the shell index (s)}$ $\rightarrow ONB_s = \{\chi_u^{\Gamma\alpha s}(\hat{\mathbf{p}})\}$

II. Projection of 3-body-Quantization-Condition = FINAL RESULT

$$\det\left(B_{uu'}^{\Gamma ss'}(W^2) + \frac{2E_s L^3}{\vartheta(s)}\tau_s(W^2)^{-1}\delta_{ss'}\delta_{uu'}\right) = 0$$

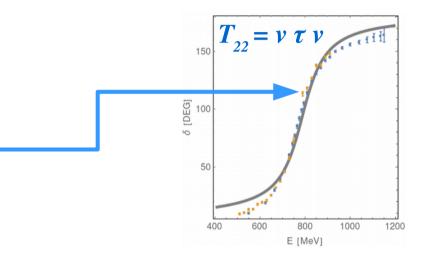
NUMERICAL EXAMPLE

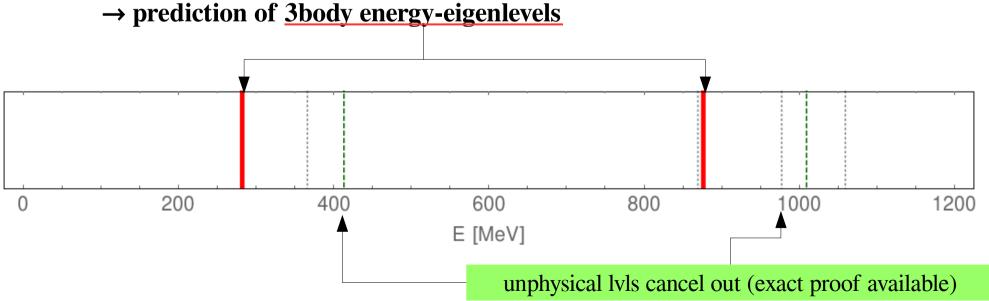
[MM & Döring EPJ A53 (2017)]

EXAMPLE

$$\det\left(B_{uu'}^{\Gamma ss'}(W^2) + \frac{2E_s L^3}{\vartheta(s)}\tau_s(W^2)^{-1}\delta_{ss'}\delta_{uu'}\right) = 0$$

- 3 particles in finite volume: *m=138 MeV*, *L=3 fm*
- one S-wave isobar \rightarrow two unknowns:
 - vertex(Isobar \rightarrow 2 stable particles)
 - subtraction constant (~mass)
- Project to $\Gamma = A^{I+}$





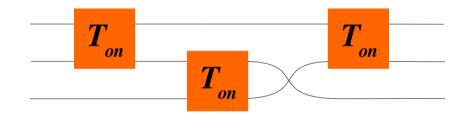
SUMMARY/OUTLOOK

3-body scattering amplitude derived from 2&3 body Unitarity

- interaction kernel = one-particle-exchange
- flexible parametrization: real contributions can be added to the kernel
- TBD: analysis of physical systems

3-body Quantization Condition in fin. vol. derived

- cancellations of unphysical poles revealed
- projection to irreps done
- technical feasibility on a numerical example
- the only approximation = number of isobars
- TBD: multiple channels
- TBD: inclusion of isospin & angular momentum



"power of Unitarity"

THANK YOU!

