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Lattice chiral effective field theory 
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Review: D.L, Prog. Part. Nucl. Phys. 63 117-154 (2009) 
TALENT summer school lectures:  qmc2016.wordpress.ncsu.edu 



Construct the effective potential order by order 
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Contact interactions 

 
Leading order (LO) Next-to-leading order (NLO) 

Chiral effective field theory 



 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  50  100  150  200

δ
(1

S
0
) 

[d
e
g
re

e
s]

pCM  [MeV]

NPWA
LO

NLO,N2LO
N3LO

 40

 60

 80

 100

 120

 140

 160

 180

 0  50  100  150  200

δ
(3

S
1
) 

[d
e
g
re

e
s]

pCM  [MeV]

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0  50  100  150  200

ε
1
  
[d

e
g
re

e
s]

pCM  [MeV]

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0  50  100  150  200

ε
2
  
[d

e
g
re

e
s]

pCM  [MeV]

-15

-10

-5

 0

 5

 10

 0  50  100  150  200

δ
(1

P
1
) 

[d
e
g
re

e
s]

pCM  [MeV]

 0

 5

 10

 15

 20

 0  50  100  150  200

δ
(3

P
0
) 

[d
e
g
re

e
s]

pCM [MeV]

-15

-10

-5

 0

 5

 0  50  100  150  200

δ
(3

P
1
) 

[d
e
g
re

e
s]

pCM [MeV]

-2

 0

 2

 4

 6

 8

 10

 12

 14

 0  50  100  150  200

δ
(3

P
2
) 

[d
e
g
re

e
s]

pCM [MeV]

-2

 0

 2

 4

 6

 8

 10

 0  50  100  150  200

δ
(1

D
2
) 

[d
e
g
re

e
s]

pCM [MeV]

-12

-10

-8

-6

-4

-2

 0

 2

 0  50  100  150  200

δ
(3

D
1
) 

 [
d
e
g
re

e
s]

pCM  [MeV]

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  50  100  150  200

δ
(3

D
2
) 

 [
d
e
g
re

e
s]

pCM  [MeV]

-2

-1

 0

 1

 2

 3

 4

 5

 0  50  100  150  200

δ
(3

D
3
) 

 [
d
e
g
re

e
s]

pCM  [MeV]



π

π

6	

Euclidean time projection 



We can write exponentials of the interaction using a Gaussian integral 
identity 

We remove the interaction between nucleons and replace it with the 
interactions of each nucleon with a background field. 
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Auxiliary field method 
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Science objectives 

Want ab initio calculations of scattering and reactions relevant to alpha 
processes in stellar evolution and Type Ia supernovae 

Challenge 

How to reduce the computational scaling of the calculations with 
number of nucleons? 
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Adiabatic projection method 

Strategy is to divide the problem into two parts.  In the first part, we 
use Euclidean time projection and lattice Monte Carlo to derive an ab 
initio low-energy cluster Hamiltonian, called the adiabatic Hamiltonian.   

In the second part, we use the adiabatic Hamiltonian to compute 
scattering phase shifts or reaction amplitudes. 
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The adiabatic projection method is a first principles method for scattering 
and reactions.  It computes enough scattering information from Monte 
Carlo simulations to construct an effective Hamiltonian. 

Computational scaling is roughly quadratic in the number of nucleons. 
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Use projection Monte Carlo to propagate cluster wave functions in 
Euclidean time to form dressed cluster states 
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We then evaluate matrix elements of the full microscopic Hamiltonian 
with respect to the dressed cluster states, 

Since the dressed cluster states are in general not orthogonal, we  
construct a norm matrix given by the inner product 



The adiabatic Hamiltonian is defined by the matrix product 

We now treat the adiabatic Hamiltonian as an effective two-particle 
Hamiltonian for scattering and reaction calculations. 
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Ab initio results for alpha-alpha scattering up to NNLO with lattice 
spacing 1.97 fm. 

Using the adiabatic projection method, we performed lattice simulations 
for the S-wave and D-wave channels. 

Elhatisari, D.L., Rupak, Epelbaum, Krebs, Lähde, Luu, Meißner, Nature 528, 111 (2015) 
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A common challenge faced in many fields of quantum physics is finding the 
extremal eigenvalues and eigenvectors of a Hamiltonian matrix too large to 
store in computer memory.   

Challenge 

There are numerous efficient methods developed for this task.  All existing 
methods either use Monte Carlo simulations, diagrammatic expansions, 
variational methods, or some combination. 

The problem is that they generally fail when some control parameter in the 
Hamiltonian matrix exceeds some threshold value. 
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We demonstrate that when a control parameter in the Hamiltonian matrix 
is varied smoothly, the extremal eigenvectors do not explore the large 
dimensionality of the linear space.  Instead they trace out trajectories with 
significant displacements in only a small number of linearly-independent 
directions.   

Eigenvector continuation 

We prove this empirical observation using analytic function theory and the 
principles of analytic continuation.  

Since the eigenvector trajectory is a low-dimensional manifold embedded in 
a very large space, we can find the desired eigenvector using methods 
similar to image recognition in machine learning. 
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D. Frame, R. He, I. Ipsen, Da. Lee, De. Lee, E. Rrapaj, arXiv:1711.07090 



Consider a one-parameter family of Hamiltonian matrices of the form 

where H0 and H1 are Hermitian.  Let the eigenvalues and eigenvectors be 
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We can perform series expansions around the point c = 0. 

This is the strategy of perturbation theory.  We can compute each term in 
the series when the eigenvalues and eigenvectors of H0 are known or 
computable. 



	
	
	

	
	
	
	

21	

Perturbation theory 

convergence	region	
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Bose-Hubbard model 

In order to illuminate our discussion with a concrete example, we consider 
a quantum Hamiltonian known as the Bose-Hubbard model in three 
dimensions.  It describes a system of identical bosons on a three-dimensional 
cubic lattice. 

The parameter t controls the hopping the bosons on the lattice, and U is the 
single-site pairwise interaction.  We set the chemical potential to be 
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Perturbation theory fails at strong attractive coupling 
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Restrict the linear space to the span of three vectors 
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analy-c	con-nua-on	



The eigenvector can be well approximated as a linear combination of a 
few vectors, using either the original series expansion 
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or the rearranged multi-series expansion we obtained through analytic 
continuation  

As c is varied the eigenvector does not explore the large dimensionality of 
the linear space, but is instead well approximated by a low-dimension 
manifold. 
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We can “learn” the eigenvector trajectory in one region and perform 
eigenvector continuation to another region 
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The Riemann surfaces of the degenerate eigenvectors are entwined at 
branch point singularities. 
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Applying eigenvector continuation to more than one eigenvector at a time 
accelerates convergence near avoided level crossings. 
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Contact interactions 

 

Application: Neutron matter simulations 

We consider lattice effective field theory simulations of the neutron matter at 
the leading order. 

As a challenge to the eigenvector continuation technique, we use a lattice 
action for one-pion exchange that causes severe Monte Carlo sign oscillations. 

D.L., in “An Advanced Course in Computational Nuclear Physics”, Hjorth-Jensen, Lombardo,  
van Kolck, Eds., Lecture Notes in Physics, Volume 936 [arXiv:1609.00421] 
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Solve the generalized eigenvalue problem by finding the eigenvalues and 
eigenvectors of 

Use Monte Carlo simulations to compute projection amplitudes 

Eigenvector continuation with quantum Monte Carlo 
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Eigenvector continuation for fourteen neutrons (L = 8 fm) 
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If we combine the adiabatic projection method with eigenvector 
continuation, then the dressed cluster states have the form 

We evaluate matrix elements of the full microscopic Hamiltonian at the 
target coupling using the dressed cluster states, 

The norm matrix is given by the inner product 
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The adiabatic Hamiltonian is given by the matrix product 

We had already been using this formalism in its simplest form for the 
Coulomb interaction.  We were setting the electromagnetic coupling for 
the dressed cluster states to zero and setting the target electromagnetic 
coupling to the physical value. 

But now the eigenvector continuation formalism provides a complete 
theoretical framework that can be systematically improved. 
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Summary and Outlook 

These are exciting times for the ab initio 
nuclear theory community.  In lattice EFT, 
we have new projects in motion which are 
pushing the current frontiers. 
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Currently working to improve our 
understanding of the detailed connection 
between bare nuclear forces and nuclear 
structure for light and medium-mass nuclei. 



Applying the adiabatic projection method to 
low-energy nucleon-nucleus and alpha-
nucleus  scattering and reactions.  
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Implementing eigenvector continuation to 
treat all higher-order interactions in chiral 
effective field theory.  Also starting to 
implement eigenvector continuation in 
lattice QCD for quark mass extrapolations. 



44	

Rokash, Pine, Elhatisari, D.L., Epelbaum, Krebs, PRC 92, 054612 (2015) 

Asymptotic cluster scattering wave functions  

In the far asymptotic region where our dressed clusters are widely 
separated, they interact only through infinite-range forces such as the 
Coulomb interaction.   

Therefore  we can describe everything with an effective cluster 
Hamiltonian Heff that is nothing more than a free lattice Hamiltonian 
for two point particles plus any infinite-range interactions inherited 
from the full microscopic Hamiltonian. So in the asymptotic region we 
have 

Extra Slides 



Since		

we conclude that the adiabatic Hamiltonian coincides with the 
effective cluster Hamiltonian in the asymptotic region		
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In the asymptotic region, we are inverting the diffusion process when 
computing the adiabatic Hamiltonian and are left with an effective cluster 
Hamiltonian in position space basis. 
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