Volume Dependence of N-Body Bound States

Sebastian König

in collaboration with Dean Lee

INT Workshop 18-70W, University of Washington

Seattle, WA

February 9, 2018

arXiv:1701.00279 [hep-lat], to appear in PLB

European Research Counci Established by the European Commission

Finite periodic boxes

- physical system enclosed in **finite volume (box)**
- typically used: **periodic boundary conditions**
- **volume-dependent energies**

Lüscher formalism

Physical properties encoded in the *L***-dependent energy levels!**

- infinite-volume S-matrix governs discrete finite-volume spectrum
- PBC natural for lattice calculations. . .
- ... but can also be implemented with other methods

Overview of recent results

1 Two-body sector

nonzero angular momentum

SK, Lee, Hammer, PRL **107** 112001 (2011); Annals Phys. **327** 1450 (2011)

• moving frames (twisted boundary conditions)

Davoudi, Savage, PRD **84** 114502 (2011)

 \bullet coupled channels, spin, resonances, ...

e.g., Döring et al., Eur. Phys. J. A 48 114 (2012); Briceño et al., Phys. Rev. D 89 074507 (2014)

 \bullet ...

Overview of recent results

¹ **Two-body sector**

nonzero angular momentum

SK, Lee, Hammer, PRL **107** 112001 (2011); Annals Phys. **327** 1450 (2011)

• moving frames (twisted boundary conditions)

Davoudi, Savage, PRD **84** 114502 (2011)

 \bullet coupled channels, spin, resonances, ...

e.g., Döring et al., Eur. Phys. J. A 48 114 (2012); Briceño et al., Phys. Rev. D 89 074507 (2014)

 \bullet ...

² **Three-body sector**

- **E** Efimov physics (bosons, triton) in finite box Kreuzer+Hammer, PLB **673**, 260 (2008); **694**, 424(2011); Kreuzer+Grießhammer, EPJA **48** 93 (2012)
- topological correction factors Bour, SK, Lee, Hammer, Meißner, PRD **84** 091503(R) (2011); Rokash et al., JPG **41** 015105 (2014)
- explicit result for three bosons at unitarity

Meißner, Ríos, Rusetsky, PRL 114 091602 (2015)

- twisted boundary conditions
- many formal results (quantization condition)

K¨orber+Luu, PRC **93** 054002 (2016)

Polejaeva+Rusetsky, EPJA **48** 67 (2012)

Hansen+Sharpe, PRD **90** 116003 (2014), . . . , Briceno, Hansen, Sharpe, PRD ˜ **95** 074510 (2017)

Hammer, Pang, Rusetsky, JHEP **1709** 109; JHEP **1710** 115 (2017)

Mai+D¨oring, EPJA **53** 240 (2017)

[Volume Dependence of N-Body Bound States](#page-0-0) – p. 3

$$
\hat{H} |\psi_B\rangle = -\frac{\kappa^2}{2\mu} |\psi_B\rangle
$$

binding momentum *κ* \leftrightarrow intrinsic length scale

Asymptotic wavefunction overlap

$$
\Delta B(L) = \sum_{|\mathbf{n}|=1} \int \mathrm{d}^3 r \, \psi_B^*(\mathbf{r}) \, V(\mathbf{r}) \, \psi_B(\mathbf{r}+\mathbf{n}L) + \mathcal{O}(\mathrm{e}^{-\sqrt{2}\kappa L}) \Bigg|_{\text{M. Lüscher, Commun. Math. Phys. 104 177 (1986)}}
$$

- $\int \textrm{for S-wave states, one finds} \ \Delta B(L) = -3\pi |\gamma|^2 \frac{\textrm{e}^{-\kappa L}}{\epsilon}$ $\frac{e^{-\kappa L}}{\mu L} + \mathcal{O}(\mathrm{e}^{-\sqrt{2}\kappa L})$
- **•** in general, the prefactor is a polynomial in $1/\kappa L$

SK, Lee, Hammer, PRL **107** 112001 (2011); Annals Phys. **327**, 1450 (2012)

$$
\Delta B(L) = \sum_{|\mathbf{n}|=1} \int d^3 r \, \psi_B^*(\mathbf{r}) \, V(\mathbf{r}) \, \psi_B(\mathbf{r} + \mathbf{n}L) + \mathcal{O}(e^{-\sqrt{2}\kappa L})
$$

$$
\Delta B(L) = \sum_{|\mathbf{n}|=1} \int \mathrm{d}^3 r \, \psi_B^*(\mathbf{r}) \, V(\mathbf{r}) \, \psi_B(\mathbf{r} + \mathbf{n}L) + \mathcal{O}(\mathrm{e}^{-\sqrt{2}\kappa L})
$$

It's all determined by the tail!

It's all determined by the tail!

$$
\hat{H} |\psi_B\rangle = -\frac{\kappa^2}{2\mu} |\psi_B\rangle
$$

binding momentum *κ* \leftrightarrow intrinsic length scale

Asymptotic wavefunction overlap

$$
\Delta B(L) = \sum_{|\mathbf{n}|=1} \int \mathrm{d}^3 r \, \psi_B^*(\mathbf{r}) \, V(\mathbf{r}) \, \psi_B(\mathbf{r}+\mathbf{n}L) + \mathcal{O}(\mathrm{e}^{-\sqrt{2}\kappa L}) \Bigg|_{\text{M. Lüscher, Commun. Math. Phys. 104 177 (1986)}}
$$

- $\int \textrm{for S-wave states, one finds} \ \Delta B(L) = -3\pi |\gamma|^2 \frac{\textrm{e}^{-\kappa L}}{\epsilon}$ $\frac{e^{-\kappa L}}{\mu L} + \mathcal{O}\left(e^{-\sqrt{2}\kappa L}\right)$
- **•** in general, the prefactor is a polynomial in $1/\kappa L$

SK, Lee, Hammer, PRL **107** 112001 (2011); Annals Phys. **327**, 1450 (2012)

N-body setup

- 2- up to *N*-body interactions: $V_{1\cdots N}(\mathbf{r}_{1}, \cdots \mathbf{r}_{N}; \mathbf{r}'_{1}, \cdots \mathbf{r}'_{N}) =$ \sum *i<j* $W_{i,j}(\mathbf{r}_i, \mathbf{r}_j; \mathbf{r}_i', \mathbf{r}_j')1_{i,j} + \sum_{i=1}^n \mathbf{r}_i'$ *i<j<k* $W_{i,j,k}(\mathbf{r}_i, \mathbf{r}_j, \mathbf{r}_k; \mathbf{r}'_i, \mathbf{r}'_j, \mathbf{r}'_k)1_{j,j,k} + \cdots$
- can be local or nonlocal (as written above)
- all with finite range, set $R = \max\{R_{i,j},\dots\}$, assume $L \gg R$

Cluster separation

Q consider one particle (WLOG the first) separated from all others \rightarrow *S* = {(**r**₁*,* · · · **r**_{*N*}) : |**r**₁ - **r**_{*i*}| > *R* $\forall i$ = 2*,* · · · *N*}

Cluster separation

Q consider one particle (WLOG the first) separated from all others

 \rightarrow *S* = {(**r**₁*,* · · · **r**_{*N*}) : |**r**₁ - **r**_{*i*}| > *R* $\forall i$ = 2*,* · · · *N*}

² **look at Hamiltonian restricted to** *S***:**

 $\hat{H}|_S = \sum$ *N i*=2 $\left[\hat{K}_i - \hat{K}_{2\cdots N}^{\text{CM}} + \hat{V}_{2\cdots N}\right] + \hat{K}_{1|N-1}^{\text{rel}}$ no interaction $\hat{V}_{1\cdots}$!

Cluster separation

Q consider one particle (WLOG the first) separated from all others

 \rightarrow *S* = {(**r**₁*,* · · · **r**_{*N*}) : |**r**₁ - **r**_{*i*}| > *R* $\forall i$ = 2*,* · · · *N*}

² **look at Hamiltonian restricted to** *S***:**

 $\hat{H}|_S = \sum$ *N i*=2 $\left[\hat{K}_i - \hat{K}_{2\cdots N}^{\text{CM}} + \hat{V}_{2\cdots N}\right] + \hat{K}_{1|N-1}^{\text{rel}}$ no interaction $\hat{V}_{1\cdots}$!

 \bullet separation ansatz: $\Psi(\mathbf{r}_1, \cdots \mathbf{r}_N) = \sum \mathbf{r}_1$ $\sum_{\alpha} f_{\alpha}(\mathbf{r}_{2}, \cdots \mathbf{r}_{N}) g_{\alpha}(\mathbf{r}_{1|N-1})$

- $\left\| \begin{matrix} \hat{H} \Psi \end{matrix} \right\|_S = -B_N \Psi \Big|_S$
- lowest *f*₀ is eigenstate of sub-Hamiltonian with energy $-B_{N-1}$
- $\bullet \rightsquigarrow q_0$ is Bessel function with scale set by $B_N B_{N-1}$

General case

 r_1

 \mathbf{r}_A

⁴ **now separate** *A* **particles from the rest and follow the same steps**

 \mathbf{r}_{N}

Relevant variables

$$
\mathbf{r}_{A|N-A} = \frac{m_1 \mathbf{r}_1 + \dots + m_A \mathbf{r}_A}{m_1 + \dots + m_A} - \frac{m_{A+1} \mathbf{r}_{A+1} + \dots + m_N \mathbf{r}_N}{m_{A+1} + \dots + m_N}
$$

$$
\frac{1}{\mu_{A|N-A}} = \frac{1}{m_1 + \dots + m_A} + \frac{1}{m_{A+1} + \dots + m_N}
$$

$$
\kappa_{A|N-A} = \sqrt{2\mu_{A|N-A}(B_N - B_A - B_{N-A})}
$$

$$
\psi_N^B(\mathbf{r}_1,\cdots\mathbf{r}_N) \propto \psi_A^B(\mathbf{r}_1,\cdots\mathbf{r}_A)\psi_{N-A}^B(\mathbf{r}_{A+1},\cdots\mathbf{r}_N)
$$

$$
\times (\kappa_{A|N-A}r_{A|N-A})^{1-d/2}K_{d/2-1}(\kappa_{A|N-A}r_{A|N-A})
$$

note: this assumes both clusters to be bound

 $\rightarrow R$

[Volume Dependence of N-Body Bound States](#page-0-0) – p. 9

General bound-state volume dependence

volume dependence ↔ overlap of asymptotic wave functions

$$
\kappa_{A|N-A}=\sqrt{2\mu_{A|N-A}(B_N{-}B_A{-}B_{N-A})}
$$

Volume dependence of *N*-body bound state

$$
\begin{aligned} \Delta B_N(L) &\propto (\kappa_{A|N-A}L)^{1-d/2} \, K_{d/2-1}(\kappa_{A|N-A}L) \\ &\sim \exp\left(-\kappa_{A|N-A}L\right)/L^{(d-1)/2} \quad \text{as} \quad L\rightarrow \infty \\ (L=\text{box size, d no. of spatial dimensions, $K_n=\text{Bessel function}$}) \\ &\stackrel{\text{SK and D. Lee, arXiv:1701.00279 [hep-lat]}}{\sim} \end{aligned}
$$

• channel with smallest $κ_{A|N-A}$ determines asymptotic behavior

Analytical examples

Three bosons at unitarity

• two-body interaction with zero range and infinite scattering length

$$
\Delta B_3(L) \propto (\kappa_{1|2}L)^{-1/2} K_{1/2}(\kappa_{1|2}L) P(\kappa_{1|2}L)
$$

$$
\sim \exp\left(-\sqrt{\frac{4mB_3}{3}}L\right) \left(\sqrt{\frac{4mB_3}{3}}L\right)^{-1} P(\kappa_{1|2}L)
$$

● same exp. dependence as exact result \checkmark Meißner et al., PRL 114 091602 (2015) by comparison, power-law factor $P(x)=x^{-1/2}$

Analytical examples

Three bosons at unitarity

• two-body interaction with zero range and infinite scattering length

$$
\Delta B_3(L) \propto (\kappa_{1|2}L)^{-1/2} K_{1/2}(\kappa_{1|2}L) P(\kappa_{1|2}L)
$$

$$
\sim \exp\left(-\sqrt{\frac{4mB_3}{3}}L\right) \left(\sqrt{\frac{4mB_3}{3}}L\right)^{-1} P(\kappa_{1|2}L)
$$

● same exp. dependence as exact result \checkmark Meißner et al., PRL 114 091602 (2015) by comparison, power-law factor $P(x)=x^{-1/2}$

N particles with *N*-body interaction only

spinless *N*-particle bound state with only an *N*-particle interaction \rightarrow no bound cluster substructures!

•
$$
\psi(\mathbf{r}_1, \dots) \propto (\kappa_{1|N-1} r_{1|N-1})^{1-d(N-1)/2} K_{d(N-1)/2-1}(\kappa_{1|N-1} r_{1|N-1})
$$

again agrees with prediction \checkmark , read off $P(x) = x^{-d(N-2)/2}$

Generator code

onlinewebfonts.com

- **o** numerical code to check derived volume dependence
- published with paper, using "scientific copyleft" terms
- **•** fully general: arbitrary dimensions, number of particles
- automatic code generation for each specific system

setup **→ Haskell → MATLAB/Octave →** output

Generator code

onlinewebfonts.com

- **o** numerical code to check derived volume dependence
- published with paper, using "scientific copyleft" terms
- **•** fully general: arbitrary dimensions, number of particles
- automatic code generation for each specific system

setup **→ Haskell → MATLAB/Octave →** output

A case for functional programming

- **tell computer what you want, not how to calculate it**
- no loops, only recursion \rightsquigarrow ideal for certain problems
- no mutable variables, only functions
- \bullet Haskell compiles to maschine code, can be linked with $C/C++$
- (NB: full-thruster Mathematica uses functional techniques as well)

Numerical results

*֒***→ straight lines ↔ excellent agreement with prediction**

More complicated example

Typically, one exponential dominates, but not necessarily:

- **three-body system unbound**
- asymptotic slope from 2|2 separation

Finite-volume shift and ANC

recall:
$$
\psi_N^B(\mathbf{r}_1, \cdots \mathbf{r}_N) \propto \psi_A^B(\cdots) \psi_{N-A}^B(\cdots) \times \psi_{\text{asympt}}(r_{A|N-A})
$$

$$
\psi_{\text{asympt}}(r_{A|N-A}) = \gamma \sqrt{\frac{2\kappa_{A|N-A}}{\pi}} (r_{A|N-A})^{1-d/2} K_{d/2-1}(\kappa_{A|N-A}r_{A|N-A})
$$

 γ = asymptotic normalization coefficient (ANC)

Finite-volume shift and ANC

recall:
$$
\psi_N^B(\mathbf{r}_1, \cdots \mathbf{r}_N) \propto \psi_A^B(\cdots) \psi_{N-A}^B(\cdots) \times \psi_{\text{asympt}}(r_{A|N-A})
$$

$$
\psi_{\text{asympt}}(r_{A|N-A}) = \gamma \sqrt{\frac{2\kappa_{A|N-A}}{\pi}} (r_{A|N-A})^{1-d/2} K_{d/2-1}(\kappa_{A|N-A}r_{A|N-A})
$$

 γ = asymptotic normalization coefficient (ANC)

for comparison, extract ANC from finite-volume wavefunction (mind the PBC)

ANC comparison

Compare ANC result to direct extrapolation from wavefunction:

0.1

*֒***→ good agreement** "

1 2 3 4 5 6 7

 $=4$

r

Single-volume extrapolation

¹ extract *N*-body and (*N*−*A*)-body wavefunctions

• look along a given fixed direction, account for periodic boundary • divide $\psi_N(r)$ by $\psi_{N-1}(0)$ to adjust normalization

2 get ANC from ratio of tail to known asymptotic form

• use
$$
\Delta B_N(L) = \frac{\pm \sqrt{\frac{2}{\pi}} f(d) |\gamma^2|}{\mu_{A|N-A}} \kappa_{A|N-A}^{2-d/2} L^{1-d/2} K_{d/2-1}(\kappa_{A|N-A}L)
$$

- sign determined by angular momentum (or leading parity)
- *κA*|*N*−*^A* extracted as part of ANC fit, initial value from energies at *L*

Single-volume extrapolation

• overall good agreement with known actual energies !

- uncertainty included fit error and variation of tail fit range
- in practice, noisy data will give larger uncertainties

Summary and outlook

- leading volume dependence known for **arbitrary bound states**
- reproduces known results, **checked numerically**
- calculate ANCs, **single-volume extrapolations possible!**
- applications to lattice QCD, EFT, cold-atomic systems

Summary and outlook

- leading volume dependence known for **arbitrary bound states**
- reproduces known results, **checked numerically**
- calculate ANCs, **single-volume extrapolations possible!**
- applications to lattice QCD, EFT, cold-atomic systems

Things to do

- **o** general derivation of power-law correction factors
- \bullet connection with / inspiration for general quant. conditions
- **•** include Coulomb interaction
	- \hookrightarrow expect asymptotic behavior given by Whittaker function

Thank you!

Established by the European Commission

TECHNISCHE UNIVERSITÄT
DARMSTADT

