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Finite periodic boxes

physical system enclosed

in finite volume (box)

typically used:

periodic boundary conditions

 volume-dependent energies

Lüscher formalism

Physical properties encoded in the L-dependent energy levels!

infinite-volume S-matrix governs discrete finite-volume spectrum

PBC natural for lattice calculations. . .

. . . but can also be implemented with other methods
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Overview of recent results

1 Two-body sector
nonzero angular momentum

SK, Lee, Hammer, PRL 107 112001 (2011); Annals Phys. 327 1450 (2011)

moving frames (twisted boundary conditions)
Davoudi, Savage, PRD 84 114502 (2011)

coupled channels, spin, resonances, . . .
e.g., Döring et al., Eur. Phys. J. A 48 114 (2012); Briceño et al., Phys. Rev. D 89 074507 (2014)

. . .
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moving frames (twisted boundary conditions)
Davoudi, Savage, PRD 84 114502 (2011)

coupled channels, spin, resonances, . . .
e.g., Döring et al., Eur. Phys. J. A 48 114 (2012); Briceño et al., Phys. Rev. D 89 074507 (2014)

. . .

2 Three-body sector
Efimov physics (bosons, triton) in finite box

Kreuzer+Hammer, PLB 673, 260 (2008); 694, 424(2011); Kreuzer+Grießhammer, EPJA 48 93 (2012)

topological correction factors
Bour, SK, Lee, Hammer, Meißner, PRD 84 091503(R) (2011); Rokash et al., JPG 41 015105 (2014)

explicit result for three bosons at unitarity
Meißner, Ŕıos, Rusetsky, PRL 114 091602 (2015)

twisted boundary conditions
Körber+Luu, PRC 93 054002 (2016)

many formal results (quantization condition)
Polejaeva+Rusetsky, EPJA 48 67 (2012)

Hansen+Sharpe, PRD 90 116003 (2014), . . . , Briceño, Hansen, Sharpe, PRD 95 074510 (2017)

Hammer, Pang, Rusetsky, JHEP 1709 109; JHEP 1710 115 (2017)

Mai+Döring, EPJA 53 240 (2017)
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Two-body review

Ĥ |ψB〉 = −
κ2

2µ
|ψB〉

binding momentum κ

↔ intrinsic length scale

→֒

Asymptotic wavefunction overlap

∆B(L) =
∑

|n|=1

∫

d3r ψ∗
B(r)V (r)ψB(r + nL) + O

(

e−
√

2κL)

M. Lüscher, Commun. Math. Phys. 104 177 (1986)

for S-wave states, one finds ∆B(L) = −3π|γ|2
e−κL

µL
+ O

(

e−
√

2κL
)

in general, the prefactor is a polynomial in 1/κL
SK, Lee, Hammer, PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)
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It’s all determined by the tail!
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Two-body review

∆B(L) =
∑

|n|=1

∫

d3r ψ∗
B(r)V (r)ψB(r + nL) + O

(

e−
√

2κL)

æ æ

L

It’s all determined by the tail!

ψ∗
B(r)V (r)

=
[

∆r − κ2
]

ψ∗
B(r)

Y m

ℓ (θ, φ)
ĥ

+

ℓ
(iκr)

r

= (−i)ℓ
Rm

ℓ

(

−

1
κ

∇r

)

e−κr

r

[

∆r − κ2
]

e−κr

r

= −4πδ(3)(r)
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Ĥ |ψB〉 = −
κ2

2µ
|ψB〉

binding momentum κ

↔ intrinsic length scale

→֒

Asymptotic wavefunction overlap

∆B(L) =
∑

|n|=1

∫

d3r ψ∗
B(r)V (r)ψB(r + nL) + O

(

e−
√

2κL)
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N-body setup

2- up to N -body interactions: V1···N (r1, · · · rN ; r
′
1, · · · r

′
N ) =

∑

i<j

Wi,j(ri, rj ; r
′
i, r

′
j)1/i,/j +

∑

i<j<k

Wi,j,k(ri, rj , rk; r
′
i, r

′
j , r

′
k)1/i,/j,/k + · · ·

can be local or nonlocal (as written above)

all with finite range, set R = max{Ri,j , · · · }, assume L ≫ R
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Cluster separation

1 consider one particle (WLOG the first) separated from all others

→֒ S = {(r1, · · · rN ) : |r1 − ri| > R ∀i = 2, · · ·N}
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Cluster separation

1 consider one particle (WLOG the first) separated from all others

→֒ S = {(r1, · · · rN ) : |r1 − ri| > R ∀i = 2, · · ·N}

2 look at Hamiltonian restricted to S:

Ĥ
∣

∣

S
=

N
∑

i=2

[

K̂i − K̂CM
2···N + V̂2···N

]

+ K̂rel
1|N−1 no interaction V̂1··· !
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Cluster separation

1 consider one particle (WLOG the first) separated from all others

→֒ S = {(r1, · · · rN ) : |r1 − ri| > R ∀i = 2, · · ·N}

2 look at Hamiltonian restricted to S:

Ĥ
∣

∣

S
=

N
∑

i=2

[

K̂i − K̂CM
2···N + V̂2···N

]

+ K̂rel
1|N−1 no interaction V̂1··· !

3 separation ansatz: Ψ(r1, · · · rN ) =
∑

α

fα(r2, · · · rN )gα(r1|N−1)

overall Schrödinger equation: ĤΨ
∣

∣

S
= −BN Ψ

∣

∣

S
lowest f0 is eigenstate of sub-Hamiltonian with energy −BN−1

 g0 is Bessel function with scale set by BN −BN−1
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General case

4 now separate A particles from the rest and follow the same steps

Relevant variables

rA|N−A = m1r1+···+mArA

m1+···+mA
− mA+1rA+1+···+mN rN

mA+1+···+mN

1

µA|N−A

= 1

m1+···+mA
+ 1

mA+1+···+mN

κA|N−A =
√

2µA|N−A(BN −BA −BN−A)

ψB
N (r1, · · · rN ) ∝ ψB

A (r1, · · · rA)ψB
N−A(rA+1, · · · rN )

× (κA|N−ArA|N−A)1−d/2 Kd/2−1(κA|N−ArA|N−A)

note: this assumes both clusters to be bound
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General bound-state volume dependence

volume dependence ↔ overlap of asymptotic wave functions

κA|N−A =
√

2µA|N−A(BN −BA−BN−A)

Volume dependence of N -body bound state

∆BN (L) ∝ (κA|N−AL)1−d/2Kd/2−1(κA|N−AL)

∼ exp
(

−κA|N−AL
)

/L(d−1)/2 as L → ∞

(L = box size, d no. of spatial dimensions, Kn = Bessel function)
SK and D. Lee, arXiv:1701.00279 [hep-lat]

channel with smallest κA|N−A determines asymptotic behavior
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Analytical examples

Three bosons at unitarity

two-body interaction with zero range and infinite scattering length

∆B3(L) ∝ (κ1|2L)−1/2K1/2(κ1|2L)P (κ1|2L)

∼ exp

(

−
√

4mB3
3 L

) (

√

4mB3
3 L

)−1

P (κ1|2L)

same exp. dependence as exact result ! Meißner et al., PRL 114 091602 (2015)

by comparison, power-law factor P (x) = x−1/2
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√

4mB3
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) (
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4mB3
3 L

)−1

P (κ1|2L)

same exp. dependence as exact result ! Meißner et al., PRL 114 091602 (2015)

by comparison, power-law factor P (x) = x−1/2

N particles with N -body interaction only

spinless N -particle bound state with only an N -particle interaction

 no bound cluster substructures!

ψ(r1, · · · ) ∝ (κ1|N−1r1|N−1)1−d(N−1)/2Kd(N−1)/2−1(κ1|N−1r1|N−1)

again agrees with prediction !, read off P (x) = x−d(N−2)/2
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Generator code

onlinewebfonts.com

numerical code to check derived volume dependence

published with paper, using “scientific copyleft” terms

fully general: arbitrary dimensions, number of particles

automatic code generation for each specific system

setup → Haskell → MATLAB/Octave → output
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Generator code

onlinewebfonts.com

numerical code to check derived volume dependence

published with paper, using “scientific copyleft” terms

fully general: arbitrary dimensions, number of particles

automatic code generation for each specific system

setup → Haskell → MATLAB/Octave → output

A case for functional programming

tell computer what you want, not how to calculate it

no loops, only recursion  ideal for certain problems

no mutable variables, only functions

Haskell compiles to maschine code, can be linked with C/C++

(NB: full-thruster Mathematica uses functional techniques as well)
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Numerical results

N = 2
N = 3
N = 4
N = 5

D = 1, alatt = 1/3, k = 2

lo
g(

Δ
B

)

−30

−25

−20

−15

−10

−5

0

L
0 10 20 30 40 50

N = 2
N = 3

D = 3, alatt = 1/2, k = 2

lo
g(

L
 Δ

B
)

−12.5

−10

−7.5

−5

−2.5

0

2.5

L
5 10 15 20 25

→֒ straight lines ↔ excellent agreement with prediction

N BN Lmin . . . Lmax κfit κ1|N−1

d = 1, V0 = −1.0, R = 1.0

2 0.356 20 . . . 48 0.59536(3) 0.59625
3 1.275 15 . . . 32 1.1062(14) 1.1070
4 2.859 12 . . . 24 1.539(3) 1.541
5 5.163 12 . . . 20 1.916(21) 1.920

d = 3, V0 = −5.0, R = 1.0

2 0.449 15 . . . 24 0.6694(2) 0.6700
3 2.916 4 . . . 14 1.798(3) 1.814
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More complicated example

Typically, one exponential dominates, but not necessarily:

Setup

1 attractive two-body force  B2 < 0

2 add repulsive three-body force

3 add attractive four-body force  B4 < 0

D = 1, alatt = 1/3, k = 4

N = 2
N = 4

lo
g
(Δ

B
)

−30

−23

−20

−13

−10

−3

0

L
0 3 10 20 23 30

κfit = 1.318 κ2|2 = 1.282

three-body system
unbound

asymptotic slope from
2|2 separation
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Finite-volume shift and ANC

recall: ψB
N (r1, · · · rN ) ∝ ψB

A (· · · )ψB
N−A(· · · ) × ψasympt(rA|N−A)

ψasympt(rA|N−A) = γ

√

2κA|N−A

π
(rA|N−A)1−d/2Kd/2−1(κA|N−ArA|N−A)

γ = asymptotic normalization coefficient (ANC)

Finite-volume energy shift

∆BN (L) =
(−1)ℓ+1

√

2
πf(d)|γ|2

µA|N−A
κ

2−d/2
A|N−AL

1−d/2Kd/2−1(κA|N−AL)

→֒ extract ANC from volume dependence

ψ
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√

2κA|N−A

π
(rA|N−A)1−d/2Kd/2−1(κA|N−ArA|N−A)

γ = asymptotic normalization coefficient (ANC)

Finite-volume energy shift

∆BN (L) =
(−1)ℓ+1

√

2
πf(d)|γ|2

µA|N−A
κ

2−d/2
A|N−AL

1−d/2Kd/2−1(κA|N−AL)

→֒ extract ANC from volume dependence

1 2 3 4 5 6 7
r

0.1

0.2

0.3

0.4

0.5

ψN

for comparison, extract ANC
from finite-volume wavefunction

(mind the PBC)
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ANC comparison

Compare ANC result to direct extrapolation from wavefunction:

N BN Lmax |γ|FV |γ|WF

d = 1, V0 = −1.0, R = 1.0

2 0.356 48 0.8652(4) 0.8627(4)
3 1.275 32 1.650(27) 1.638(16)
4 2.859 24 2.54(6) 2.56(8)
5 5.163 20 3.65(62) 3.63(18)

d = 2, V0 = −1.5, R = 1.5

2 0.338 36 1.923(2) 1.921(9)
3 1.424 24 5.204(4) 5.24(2)
4 3.449 14 11.2(4) 10.99(4)

d = 3, V0 = −5.0, R = 1.0

2 0.449 24 1.891(3) 1.89(1)
3 2.916 14 7.459(97) 7.83(11)

→֒ good agreement "

N = 2
N = 3
N = 4
N = 5

D = 1, alatt = 1/3, k = 2

lo
g(

Δ
B

)

−30

−25

−20

−15

−10

−5

0

L
0 10 20 30 40 50

1 2 3 4 5 6 7
r

0.1

0.2

0.3

0.4

0.5

ψN
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Single-volume extrapolation

Strategy

1 extract N -body and (N−A)-body wavefunctions

1 2 3 4 5 6 7
r

0.1

0.2

0.3

0.4

0.5

ψN

1 2 3 4 5 6 7
r

0.1

0.2

0.3

0.4

0.5

0.6

ψN-1

look along a given fixed direction, account for periodic boundary
divide ψN (r) by ψN−1(0) to adjust normalization

2 get ANC from ratio of tail to known asymptotic form

3 use ∆BN (L) =
±

√

2
π f(d)|γ2|

µA|N−A

κ
2−d/2
A|N−AL

1−d/2Kd/2−1(κA|N−AL)

sign determined by angular momentum (or leading parity)
κA|N−A extracted as part of ANC fit, initial value from energies at L
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Single-volume extrapolation

N BN L ∆BN (L)estimate ∆BN (L)actual

d = 1, V0 = −1.0, R = 1.0

2 0.356 8 −1.32(2) × 10−2 −1.42 × 10−2

3 1.275 8 −3.9(4) × 10−3 −3.75 × 10−3

4 2.859 8 −4.3(7) × 10−4 −4.69 × 10−4

5 5.163 8 −0.6(2) × 10−4 −0.64 × 10−4

d = 2, V0 = −1.5, R = 1.5

2 0.338 8 −2.5(6) × 10−2 −2.84 × 10−2

3 1.424 8 −5.8(6) × 10−3 −4.99 × 10−3

4 3.449 8 −4.1(6) × 10−4 −4.01 × 10−4

d = 3, V0 = −5.0, R = 1.0

2 0.356 8 −1.3(3) × 10−2 −1.34 × 10−2

3 2.916 8 −6.2(6) × 10−5 −4.80 × 10−5

overall good agreement with known actual energies !

uncertainty included fit error and variation of tail fit range

in practice, noisy data will give larger uncertainties
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Summary and outlook

leading volume dependence known for arbitrary bound states

reproduces known results, checked numerically

calculate ANCs, single-volume extrapolations possible!

applications to lattice QCD, EFT, cold-atomic systems
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Summary and outlook

leading volume dependence known for arbitrary bound states

reproduces known results, checked numerically

calculate ANCs, single-volume extrapolations possible!

applications to lattice QCD, EFT, cold-atomic systems

Things to do

general derivation of power-law correction factors

connection with / inspiration for general quant. conditions

include Coulomb interaction
→֒ expect asymptotic behavior given by Whittaker function
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The end

Thank you!
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