Volume Dependence of N-Body Bound States

Sebastian König

in collaboration with Dean Lee

INT Workshop 18-70W, University of Washington

Seattle, WA

February 9, 2018

arXiv:1701.00279 [hep-lat], to appear in PLB

European Research Council

Volume Dependence of N-Body Bound States - p. 1

Finite periodic boxes

- physical system enclosed in finite volume (box)
- typically used: periodic boundary conditions

~~ volume-dependent energies

Lüscher formalism

Physical properties encoded in the *L*-dependent energy levels!

- infinite-volume S-matrix governs discrete finite-volume spectrum
- PBC natural for lattice calculations...
- ... but can also be implemented with other methods

Overview of recent results

Two-body sector

nonzero angular momentum

SK, Lee, Hammer, PRL 107 112001 (2011); Annals Phys. 327 1450 (2011)

moving frames (twisted boundary conditions)

Davoudi, Savage, PRD 84 114502 (2011)

• coupled channels, spin, resonances, ...

e.g., Döring et al., Eur. Phys. J. A 48 114 (2012); Briceño et al., Phys. Rev. D 89 074507 (2014)

• . . .

Overview of recent results

Two-body sector

nonzero angular momentum

SK, Lee, Hammer, PRL 107 112001 (2011); Annals Phys. 327 1450 (2011)

moving frames (twisted boundary conditions)

Davoudi, Savage, PRD 84 114502 (2011)

• coupled channels, spin, resonances, ...

e.g., Döring et al., Eur. Phys. J. A 48 114 (2012); Briceño et al., Phys. Rev. D 89 074507 (2014)

• . . .

Three-body sector

- Efimov physics (bosons, triton) in finite box Kreuzer+Hammer, PLB 673, 260 (2008); 694, 424(2011); Kreuzer+Grießhammer, EPJA 48 93 (2012)
- topological correction factors
 Bour, SK, Lee, Hammer, Meißner, PRD 84 091503(R) (2011); Rokash et al., JPG 41 015105 (2014)
- explicit result for three bosons at unitarity
- twisted boundary conditions
- many formal results (quantization condition)

Körber+Luu, PRC 93 054002 (2016)

Polejaeva+Rusetsky, EPJA 48 67 (2012)

Meißner, Ríos, Rusetsky, PRL 114 091602 (2015)

Hansen+Sharpe, PRD 90 116003 (2014), ..., Briceño, Hansen, Sharpe, PRD 95 074510 (2017)

Hammer, Pang, Rusetsky, JHEP 1709 109; JHEP 1710 115 (2017)

Mai+Döring, EPJA 53 240 (2017)

Volume Dependence of N-Body Bound States - p. 3

$$\hat{H} \left| \psi_B \right\rangle = -\frac{\kappa^2}{2\mu} \left| \psi_B \right\rangle$$

binding momentum κ \leftrightarrow intrinsic length scale

Asymptotic wavefunction overlap

$$\Delta B(L) = \sum_{|\mathbf{n}|=1} \int d^3 r \, \psi_B^*(\mathbf{r}) \, V(\mathbf{r}) \, \psi_B(\mathbf{r} + \mathbf{n}L) + \mathcal{O}(e^{-\sqrt{2}\kappa L})$$
M. Lüscher, Commun. Math. Phys. **104** 177 (1986)

• for S-wave states, one finds $\Delta B(L) = -3\pi |\gamma|^2 \frac{e^{-\kappa L}}{\mu L} + \mathcal{O}(e^{-\sqrt{2\kappa L}})$

 \bullet in general, the prefactor is a polynomial in $1/\kappa L$

SK, Lee, Hammer, PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)

$$\Delta B(L) = \sum_{|\mathbf{n}|=1} \int \mathrm{d}^3 r \, \psi_B^*(\mathbf{r}) \, V(\mathbf{r}) \, \psi_B(\mathbf{r} + \mathbf{n}L) + \mathcal{O}(\mathrm{e}^{-\sqrt{2}\kappa L})$$

$$\Delta B(L) = \sum_{|\mathbf{n}|=1} \int d^3 r \, \psi_B^*(\mathbf{r}) \, V(\mathbf{r}) \, \psi_B(\mathbf{r} + \mathbf{n}L) + \mathcal{O}(e^{-\sqrt{2}\kappa L})$$

It's all determined by the tail!

It's all determined by the tail!

$$\hat{H} \left| \psi_B \right\rangle = -\frac{\kappa^2}{2\mu} \left| \psi_B \right\rangle$$

binding momentum κ \leftrightarrow intrinsic length scale

Asymptotic wavefunction overlap

$$\Delta B(L) = \sum_{|\mathbf{n}|=1} \int d^3 r \, \psi_B^*(\mathbf{r}) \, V(\mathbf{r}) \, \psi_B(\mathbf{r} + \mathbf{n}L) + \mathcal{O}(e^{-\sqrt{2}\kappa L})$$
M. Lüscher, Commun. Math. Phys. **104** 177 (1986)

- for S-wave states, one finds $\Delta B(L) = -3\pi |\gamma|^2 \frac{e^{-\kappa L}}{\mu L} + \mathcal{O}(e^{-\sqrt{2}\kappa L})$
- ullet in general, the prefactor is a polynomial in $1/\kappa L$

SK, Lee, Hammer, PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)

N-body setup

- 2- up to *N*-body interactions: $V_{1\cdots N}(\mathbf{r}_1, \cdots, \mathbf{r}_N; \mathbf{r}'_1, \cdots, \mathbf{r}'_N) = \sum_{i < j} W_{i,j}(\mathbf{r}_i, \mathbf{r}_j; \mathbf{r}'_i, \mathbf{r}'_j) \mathbf{1}_{\ell,j} + \sum_{i < j < k} W_{i,j,k}(\mathbf{r}_i, \mathbf{r}_j, \mathbf{r}_k; \mathbf{r}'_i, \mathbf{r}'_j, \mathbf{r}'_k) \mathbf{1}_{\ell,j,k} + \cdots$
- can be local or nonlocal (as written above)
- all with finite range, set $R = \max\{R_{i,j}, \cdots\}$, assume $L \gg R$

Cluster separation

• consider one particle (WLOG the first) separated from all others $\hookrightarrow S = \{(\mathbf{r}_1, \cdots \mathbf{r}_N) : |\mathbf{r}_1 - \mathbf{r}_i| > R \quad \forall i = 2, \cdots N\}$

Cluster separation

onsider one particle (WLOG the first) separated from all others

 $\hookrightarrow S = \{ (\mathbf{r}_1, \cdots \mathbf{r}_N) : |\mathbf{r}_1 - \mathbf{r}_i| > R \quad \forall i = 2, \cdots N \}$

2 look at Hamiltonian restricted to S:

 $\hat{H}|_{S} = \sum_{i=2}^{N} \left[\hat{K}_{i} - \hat{K}_{2\cdots N}^{\text{CM}} + \hat{V}_{2\cdots N} \right] + \hat{K}_{1|N-1}^{\text{rel}} \quad \text{no interaction } \hat{V}_{1\cdots} \, !$

Cluster separation

consider one particle (WLOG the first) separated from all others

 $\hookrightarrow S = \{ (\mathbf{r}_1, \cdots \mathbf{r}_N) : |\mathbf{r}_1 - \mathbf{r}_i| > R \quad \forall i = 2, \cdots N \}$

2 look at Hamiltonian restricted to S:

 $\hat{H}\big|_{S} = \sum_{i=2}^{N} \left[\hat{K}_{i} - \hat{K}_{2\cdots N}^{\text{CM}} + \hat{V}_{2\cdots N} \right] + \hat{K}_{1|N-1}^{\text{rel}} \quad \text{no interaction } \hat{V}_{1\cdots} \,!$

3 separation ansatz: $\Psi(\mathbf{r}_1, \cdots \mathbf{r}_N) = \sum_{\alpha} f_{\alpha}(\mathbf{r}_2, \cdots \mathbf{r}_N) g_{\alpha}(\mathbf{r}_{1|N-1})$

- overall Schrödinger equation: $\hat{H}\Psi\big|_S = -B_N\Psi\big|_S$
- lowest f_0 is eigenstate of sub-Hamiltonian with energy $-B_{N-1}$
- $\rightsquigarrow g_0$ is Bessel function with scale set by $B_N B_{N-1}$

General case

 \mathbf{r}_1

lacksim now separate A particles from the rest and follow the same steps

 \mathbf{r}_{N}

$$\mathbf{r}_{A|N-A} = \frac{m_{1}\mathbf{r}_{1} + \dots + m_{A}\mathbf{r}_{A}}{m_{1} + \dots + m_{A}} - \frac{m_{A+1}\mathbf{r}_{A+1} + \dots + m_{N}\mathbf{r}_{N}}{m_{A+1} + \dots + m_{N}}$$
$$\frac{1}{\mu_{A|N-A}} = \frac{1}{m_{1} + \dots + m_{A}} + \frac{1}{m_{A+1} + \dots + m_{N}}$$
$$\kappa_{A|N-A} = \sqrt{2\mu_{A|N-A}(B_{N} - B_{A} - B_{N-A})}$$

 $\psi_N^B(\mathbf{r}_1,\cdots\mathbf{r}_N) \propto \psi_A^B(\mathbf{r}_1,\cdots\mathbf{r}_A)\psi_{N-A}^B(\mathbf{r}_{A+1},\cdots\mathbf{r}_N) \\ \times (\kappa_{A|N-A}r_{A|N-A})^{1-d/2} K_{d/2-1}(\kappa_{A|N-A}r_{A|N-A})$

note: this assumes both clusters to be bound

>R

Volume Dependence of N-Body Bound States - p. 9

General bound-state volume dependence

volume dependence \leftrightarrow overlap of asymptotic wave functions

$$\kappa_{A|N-A} = \sqrt{2\mu_{A|N-A}(B_N - B_A - B_{N-A})}$$

Volume dependence of N-body bound state

• channel with smallest $\kappa_{A|N-A}$ determines asymptotic behavior

Analytical examples

Three bosons at unitarity

• two-body interaction with zero range and infinite scattering length

$$\Delta B_3(L) \propto (\kappa_{1|2}L)^{-1/2} K_{1/2}(\kappa_{1|2}L) \boldsymbol{P}(\kappa_{1|2}L) \\ \sim \exp\left(-\sqrt{\frac{4mB_3}{3}}L\right) \left(\sqrt{\frac{4mB_3}{3}}L\right)^{-1} \boldsymbol{P}(\kappa_{1|2}L)$$

• same exp. dependence as exact result \checkmark Meißner et al., PRL 114 091602 (2015) • by comparison, power-law factor $P(x) = x^{-1/2}$

Analytical examples

Three bosons at unitarity

• two-body interaction with zero range and infinite scattering length

$$\Delta B_3(L) \propto (\kappa_{1|2}L)^{-1/2} K_{1/2}(\kappa_{1|2}L) P(\kappa_{1|2}L)$$

$$\sim \exp\left(-\sqrt{\frac{4mB_3}{3}}L\right) \left(\sqrt{\frac{4mB_3}{3}}L\right)^{-1} P(\kappa_{1|2}L)$$

same exp. dependence as exact result ✓ Meißner et al., PRL 114 091602 (2015)
 by comparison, power-law factor P(x) = x^{-1/2}

N particles with N-body interaction only

spinless N-particle bound state with only an N-particle interaction
 → no bound cluster substructures!

•
$$\psi(\mathbf{r}_1, \cdots) \propto (\kappa_{1|N-1}r_{1|N-1})^{1-d(N-1)/2} K_{d(N-1)/2-1}(\kappa_{1|N-1}r_{1|N-1})$$

• again agrees with prediction \checkmark , read off $P(x) = x^{-d(N-2)/2}$

Generator code

onlinewebfonts.com

- numerical code to check derived volume dependence
- published with paper, using "scientific copyleft" terms
- fully general: arbitrary dimensions, number of particles
- automatic code generation for each specific system

$\mathsf{setup} \to \mathsf{Maskell} \to \mathsf{MATLAB}/\mathsf{Octave} \to \mathsf{output}$

Generator code

onlinewebfonts.com

- numerical code to check derived volume dependence
- published with paper, using "scientific copyleft" terms
- fully general: arbitrary dimensions, number of particles
- automatic code generation for each specific system

$$\mathsf{setup} \to \mathsf{Haskell} \to \mathsf{MATLAB}/\mathsf{Octave} \to \mathsf{output}$$

A case for functional programming

- tell computer what you want, not how to calculate it
- $\bullet\,$ no loops, only recursion \rightsquigarrow ideal for certain problems
- no mutable variables, only functions
- $\bullet\,$ Haskell compiles to maschine code, can be linked with C/C++
- (NB: full-thruster Mathematica uses functional techniques as well)

Numerical results

 \hookrightarrow straight lines \leftrightarrow excellent agreement with prediction

N	B_N	$L_{min} \dots L_{max}$	κ_{fit}	$\kappa_{1 N-1}$					
$d = 1, V_0 = -1.0, R = 1.0$									
2	0.356	2048	0.59536(3)	0.59625					
3	1.275	1532	1.1062(14)	1.1070					
4	2.859	1224	1.539(3)	1.541					
5	5.163	$12 \dots 20$	1.916(21)	1.920					
$d = 3, V_0 = -5.0, R = 1.0$									
2	0.449	1524	0.6694(2)	0.6700					
3	2.916	414	1.798(3)	1.814					

More complicated example

Typically, one exponential dominates, but not necessarily:

- three-body system unbound
- asymptotic slope from 2|2 separation

Finite-volume shift and ANC

$$\begin{aligned} \text{recall: } \psi_N^B(\mathbf{r}_1, \cdots \mathbf{r}_N) \propto \psi_A^B(\cdots) \psi_{N-A}^B(\cdots) \times \psi_{\text{asympt}}(r_{A|N-A}) \\ \psi_{\text{asympt}}(r_{A|N-A}) &= \gamma \sqrt{\frac{2\kappa_{A|N-A}}{\pi}} (r_{A|N-A})^{1-d/2} K_{d/2-1}(\kappa_{A|N-A}r_{A|N-A}) \end{aligned}$$

 $\gamma =$ asymptotic normalization coefficient (ANC)

Finite-volume shift and ANC

$$\begin{aligned} \text{recall: } \psi_N^B(\mathbf{r}_1, \cdots \mathbf{r}_N) \propto \psi_A^B(\cdots) \psi_{N-A}^B(\cdots) \times \psi_{\text{asympt}}(r_{A|N-A}) \\ \psi_{\text{asympt}}(r_{A|N-A}) &= \gamma \sqrt{\frac{2\kappa_{A|N-A}}{\pi}} (r_{A|N-A})^{1-d/2} K_{d/2-1}(\kappa_{A|N-A}r_{A|N-A}) \end{aligned}$$

 $\gamma =$ asymptotic normalization coefficient (ANC)

for comparison, extract ANC from finite-volume wavefunction (mind the PBC)

ANC comparison

Compare ANC result to direct extrapolation from wavefunction:

N	B_N	L_{max}	$ \gamma _{\rm FV}$	$ \gamma _{WF}$	0 $D = 1, a_{iatt} = 1/3, k = 2$		
$d = 1, V_0 = -1.0, R = 1.0$				1.0	-5 $N=2$		
2	0.356	48	0.8652(4)	0.8627(4)	$\widehat{\mathbf{m}}_{\mathbf{n}}^{-10}$		
3	1.275	32	1.650(27)	1.638(16)	$ \underbrace{\triangleleft}_{0}^{-10} \begin{bmatrix} \mathbf{A}_{\mathbf{A}} \\ \mathbf{A}_{\mathbf{A}} \end{bmatrix} \underbrace{\mathbf{A}}_{\mathbf{A}} \underbrace{\mathbf{A}}_{\mathbf{A}} \underbrace{\mathbf{A}}_{\mathbf{A}} \underbrace{\mathbf{A}}_{\mathbf{A}} \begin{bmatrix} \mathbf{A}_{\mathbf{A}} \\ \mathbf{A}_{\mathbf{A}} \end{bmatrix} \underbrace{\mathbf{A}}_{\mathbf{A}} \underbrace{\mathbf{A}} \underbrace{\mathbf{A}} \underbrace{\mathbf{A}} \underbrace{\mathbf{A}} \underbrace{\mathbf{A}} \underbrace{\mathbf{A}} \underbrace{\mathbf{A}} \underbrace{\mathbf{A}}$		
4	2.859	24	2.54(6)	2.56(8)			
5	5.163	20	3.65(62)	3.63(18)			
$d = 2, V_0 = -1.5, R = 1.5$				1.5			
2	0.338	36	1.923(2)	1.921(9)	0 10 20 30 40 50		
3	1.424	24	5.204(4)	5.24(2)	L		
4	3.449	14	11.2(4)	10.99(4)			
$d = 3, V_0 = -5.0, R = 1.0$				1.0	ψ_N		
2	0.449	24	1.891(3)	1.89(1)			
3	2.916	14	7.459(97)	7.83(11)	- 0.3		
					0.2		

 \hookrightarrow good agreement \checkmark

4 56

2 3

1

---- r

7

Single-volume extrapolation

• extract N-body and (N-A)-body wavefunctions

• look along a given fixed direction, account for periodic boundary

- divide $\psi_N(r)$ by $\psi_{N-1}(0)$ to adjust normalization
- get ANC from ratio of tail to known asymptotic form

$$\textbf{3} \text{ use } \Delta B_N(L) = \frac{\pm \sqrt{\frac{2}{\pi}} f(d) |\gamma^2|}{\mu_{A|N-A}} \kappa_{A|N-A}^{2-d/2} L^{1-d/2} K_{d/2-1}(\kappa_{A|N-A}L)$$

- sign determined by angular momentum (or leading parity)
- $\kappa_{A|N-A}$ extracted as part of ANC fit, initial value from energies at L

Single-volume extrapolation

N	B_N	L	$\Delta B_N(L)_{\rm estimate}$	$\Delta B_N(L)_{\rm actual}$				
$d = 1, V_0 = -1.0, R = 1.0$								
2	0.356	8	$-1.32(2) \times 10^{-2}$	-1.42×10^{-2}				
3	1.275	8	$-3.9(4) \times 10^{-3}$	$-3.75 imes10^{-3}$				
4	2.859	8	$-4.3(7) \times 10^{-4}$	-4.69×10^{-4}				
5	5.163	8	$-0.6(2) \times 10^{-4}$	-0.64×10^{-4}				
$d = 2, V_0 = -1.5, R = 1.5$								
2	0.338	8	$-2.5(6) \times 10^{-2}$	-2.84×10^{-2}				
3	1.424	8	$-5.8(6) \times 10^{-3}$	-4.99×10^{-3}				
4	3.449	8	$-4.1(6) \times 10^{-4}$	-4.01×10^{-4}				
$d = 3, V_0 = -5.0, R = 1.0$								
2	0.356	8	$-1.3(3) \times 10^{-2}$	-1.34×10^{-2}				
3	2.916	8	$-6.2(6) \times 10^{-5}$	$-4.80 imes 10^{-5}$				

• overall good agreement with known actual energies !

- uncertainty included fit error and variation of tail fit range
- in practice, noisy data will give larger uncertainties

Summary and outlook

- leading volume dependence known for arbitrary bound states
- reproduces known results, checked numerically
- calculate ANCs, single-volume extrapolations possible!
- applications to lattice QCD, EFT, cold-atomic systems

Summary and outlook

- leading volume dependence known for arbitrary bound states
- reproduces known results, checked numerically
- calculate ANCs, single-volume extrapolations possible!
- applications to lattice QCD, EFT, cold-atomic systems

Things to do

- general derivation of power-law correction factors
- connection with / inspiration for general quant. conditions
- include Coulomb interaction
 - \hookrightarrow expect asymptotic behavior given by Whittaker function

The end

Thank you!

European Research Council

