DISPERSIVE APPROACH TO THREE-PARTICLE SYSTEMS

ANDREW JACKURA

INDIANA UNIVERSITY JOINT PHYSICS ANALYSIS CENTER (JPAC)

INT WORKSHOP INT-18-70W MULTI-HADRON SYSTEMS FROM LATTICE QCD

FEBRUARY 5-9, 2018

Outline

- Hadron Spectroscopy, and Phenomenology
- Review of $2 \rightarrow 2$ Reactions
- $3 \rightarrow 3$ Scattering Phenomenology
- Opportunities and Future Directions

<

2 >

Hadron Spectroscopy, and Phenomenology

A. Jackura, Indiana University (ajackura@indiana.edu)

< 3 >

Hadron Spectroscopy

Constituent quark model has been successful in classifying the hadron spectrum, and gives guidance to the QCD substructure

Search for exotics (non-quark model) is goal of many experiments (*e.g.* GlueX), and many new states have been discovered (*XYZP*'s)

Baryons

Hadron Spectrosco

Constituent quark model has been si in classifying the hadron spectrum, guidance to the QCD substructure

Search for exotics (non-quark mode) goal of many experiments (e.g. Glue and many new states have been discovered (XYZP's)

4.5

4.0

3.5

 $\psi(4415)$

 $\psi(4160)$

 $\psi(4040)$

b(3770

 $\psi(2S)$

 $\eta_c(2s)$

 $\chi_{e2}(2P)$

 $\chi_{c2}(1P)$

 2^{++}

 $D\overline{D}^*$

 $D\overline{D}$

 $-\chi_{c0}(2P)$ -

Why **3-body** Physics?

Advancements in theory and experiment require revisiting **3**-body hadron scattering

Lattice QCD has been computing scattering amplitudes - Requires **3**-body formalism for continuing amplitudes to complex energies to investigate higher mass resonances

New High-precision, high-statistics data collected on many **3**-body meson systems - COMPASS, GlueX, ...

New (and old) mysteries in the light-hadron sector, e.g., $a_1(1420)$

$$a_1(1420) \to \pi^- \pi^- \pi^+$$

Why **3-body** Physics?

In heavy quarkonia, have discovered many non-quark model states (XYZs)

Many of these are found in 3-body decays, near thresholds - could 3-body effects contribute to the nature of these states?

6 (>

<

 $X(3872)/Z_c(3900) \to DD\pi$

A. JACKURA, INDIANA UNIVERSITY (AJACKURA@INDIANA.EDU)

Why **3**-body Physics?

In heavy quarkonia, have discovered many non-quark model states (XYZs)

Many of these are found in 3-body decays, near thresholds - could **3**-body effects contribute to the nature of these states?

 π

D

 \overline{D}

 π

6 (>

<

A. JACKURA, INDIANA UNIVERSITY (AJACKURA@INDIANA.EDU)

Model independent methods such as *S*-matrix theory provide constraints for reaction amplitudes: **Unitarity**, **Analyticity**, **Crossing**, and **Poincaré Symmetry**

>

<

Model independent methods such as *S*-matrix theory provide constraints for reaction amplitudes: **Unitarity**, **Analyticity**, **Crossing**, and **Poincaré Symmetry**

Model independent methods such as *S*-matrix theory provide constraints for reaction amplitudes: **Unitarity**, **Analyticity**, **Crossing**, and **Poincaré Symmetry**

Model independent methods such as *S*-matrix theory provide constraints for reaction amplitudes: **Unitarity**, **Analyticity**, **Crossing**, and **Poincaré Symmetry**

<

Model independent methods such as *S*-matrix theory provide constraints for reaction amplitudes: **Unitarity**, **Analyticity**, **Crossing**, and **Poincaré Symmetry**

Review of $2 \rightarrow 2$ Reactions

Consider the elastic scattering of the $2\rightarrow 2$ system $ab\rightarrow ab$, where *a* and *b* are distinguishable particles

Unitarity constrains the amplitude by fixing the imaginary part

Elastic Unitarity Relation (*s* < *s*_{*inelas*})

Im
$$\mathcal{F}(\{\mathbf{p}',\mathbf{p}\}) = \rho_2(s) \int d\Omega_{\mathbf{p}''} \mathcal{F}^*(\{\mathbf{p}'',\mathbf{p}'\}) \mathcal{F}(\{\mathbf{p}'',\mathbf{p}\}) \Theta(s-s_{th})$$

Can reduce the unitarity relation by Partial Wave Expansion

$$\mathcal{F}(\{\mathbf{p}',\mathbf{p}\}) = \sum_{\ell=0}^{\infty} \left(\frac{2\ell+1}{4\pi}\right) f_{\ell}(s) P_{\ell}(\widehat{\mathbf{p}}' \cdot \widehat{\mathbf{p}})$$
$$\longrightarrow \widehat{\mathbf{p}}' \cdot \widehat{\mathbf{p}} = \cos\theta$$

10 >

<

Unitarity constrains the amplitude by fixing the imaginary part

Elastic Unitarity Relation (*s* < *s*_{*inelas*})

Im
$$\mathcal{F}(\{\mathbf{p}',\mathbf{p}\}) = \rho_2(s) \int d\Omega_{\mathbf{p}''} \mathcal{F}^*(\{\mathbf{p}'',\mathbf{p}'\}) \mathcal{F}(\{\mathbf{p}'',\mathbf{p}\}) \Theta(s-s_{th})$$

Dispersive representation for partial wave amplitudes

$$f_{\ell}(s) = \frac{1}{\pi} \int_{-\infty}^{s_L} ds' \, \frac{\operatorname{Im} \, f_{\ell}(s')}{s' - s} + \frac{1}{\pi} \int_{s_{th}}^{\infty} ds' \, \frac{\rho_2(s') |f_{\ell}(s')|^2}{s' - s}$$

Nonlinear constraint for the amplitude $f_l(s)$

A. Jackura, Indiana University (ajackura@indiana.edu)

Dispersive representation for partial wave amplitudes

$$f_{\ell}(s) = \frac{1}{\pi} \int_{-\infty}^{s_L} ds' \, \frac{\operatorname{Im} \, f_{\ell}(s')}{s' - s} + \frac{1}{\pi} \int_{s_{th}}^{\infty} ds' \, \frac{\rho_2(s') |f_{\ell}(s')|^2}{s' - s}$$

Nonlinear constraint for the amplitude $f_l(s)$

Can linearize the system via N-over-D method

Related to the K-matrix

$$f_{\ell}^{-1}(s) = K_{\ell}^{-1}(s) - \frac{s}{\pi} \int_{s_{th}}^{\infty} ds' \, \frac{\rho_2(s')}{s'(s'-s)}$$

<

12 >

Can linearize the system via N-over-D method

$$f_{\ell}(s) = \frac{N_{\ell}(s)}{D_{\ell}(s)}$$

$$N_{\ell}(s) = \frac{1}{\pi} \int_{-\infty}^{s_{L}} ds' \frac{D_{\ell}(s') \operatorname{Im} f_{\ell}(s')}{s'-s}$$

$$D_{\ell}(s) = D_{\ell}^{(0)}(s) - \frac{s}{\pi} \int_{s_{th}}^{\infty} ds' \frac{\rho_{2}(s')N_{\ell}(s')}{s'(s'-s)}$$
There is freedom in the function, not constrained by general principles -
Must be determined by specific theory
Parameterize our Ignorance
Related to the K-matrix
$$f_{\ell}^{-1}(s) = K_{\ell}^{-1}(s) - \frac{s}{\pi} \int_{s_{th}}^{\infty} ds' \frac{\rho_{2}(s')}{s'(s'-s)}$$

A. Jackura, Indiana University (ajackura@indiana.edu)

C. Adolph et al. [COMPASS], Phys. Rev. D 95, no. 3, 032004 (2017)

< 14>

350

300

250

200

150

100

50

C. Adolph et al. [COMPASS], Phys. Rev. D 95, no. 3, 032004 (2017)

C. Adolph et al. [COMPASS], Phys. Rev. D 95, no. 3, 032004 (2017)

C. Adolph et al. [COMPASS], Phys. Rev. D 95, no. 3, 032004 (2017)

Consider the elastic scattering of the $3 \rightarrow 3$ system $123 \rightarrow 123$, where

1, 2, and 3 are distinguishable particles

The S-matrix is decomposed as

$$\langle \{\mathbf{p}'\} | S | \{\mathbf{p}\} \rangle = \langle \{\mathbf{p}'\} | \{\mathbf{p}\} \rangle$$

$$+ i \sum_{j} \widetilde{\delta}(p'_{j} - p_{j})(2\pi)^{4} \delta^{(4)}(Q'_{j} - Q_{j}) \mathcal{F}_{j}(\{\mathbf{p}', \mathbf{p}\}_{j})$$

$$+ i(2\pi)^{4} \delta^{(4)}(P' - P) \mathcal{A}(\{\mathbf{p}', \mathbf{p}\})$$

$$Connected$$

 $3 \rightarrow 3$ amplitudes depend on 8 independent variables. One representation is

<

16 >

Unitarity Relations

Disconnected 2 \rightarrow **2 Unitarity Relation**

$$2\operatorname{Im} \mathcal{F}_j(\{\mathbf{p}',\mathbf{p}\}_j) = \rho_2(\sigma_j) \int d\Omega_j'' \mathcal{F}_j^*(\{\mathbf{p}'',\mathbf{p}'\}_j) \mathcal{F}_j(\{\mathbf{p}'',\mathbf{p}\}_j)$$

Connected 3 \rightarrow **3 Unitarity Relation**

$$2 \operatorname{Im} \mathcal{A}(\{\mathbf{p}', \mathbf{p}\}) = \int \widetilde{d}p_1'' \widetilde{d}p_2'' \widetilde{d}p_3'' (2\pi)^4 \delta^{(4)}(P'' - P) \mathcal{A}^*(\{\mathbf{p}'', \mathbf{p}'\}) \mathcal{A}(\{\mathbf{p}'', \mathbf{p}\}) + \sum_k \rho_2(\sigma_k') \int d\Omega_k'' \mathcal{F}_k^*(\{\mathbf{p}'', \mathbf{p}'\}_k) \mathcal{A}(\{\mathbf{p}'', \mathbf{p}\}) \Theta(\sigma_k' - \sigma_{th}^{(k)}) + \sum_j \rho_2(\sigma_j) \int d\Omega_j'' \mathcal{A}^*(\{\mathbf{p}'', \mathbf{p}'\}) \mathcal{F}(\{\mathbf{p}'', \mathbf{p}\}_j) \Theta(\sigma_j - \sigma_{th}^{(j)}) + \sum_{\substack{j,k \\ j \neq k}} 2\pi \, \delta(u_{jk} - m_{(jk)}^2) \, \mathcal{F}_k^*(\{\mathbf{p}'', \mathbf{p}'\}_k) \mathcal{F}_j(\{\mathbf{p}'', \mathbf{p}\}_j)$$

Unitarity Relations

Disconnected 2 \rightarrow **2 Unitarity Relation**

Connected 3 \rightarrow **3 Unitarity Relation**

The Isobar Model

Assume that the amplitude can be expanded into Isobar Amplitudes

$$\mathcal{A}(\{\mathbf{p}',\mathbf{p}\}) = \sum_{j,k} \mathcal{A}_{kj}(\{\mathbf{p}',\mathbf{p}\}_{kj})$$

Two particles interact before interacting with spectator

Sum over all allowed isobars

The Isobar Model

 $s_j, s'_k, \lambda_j, \lambda'_k$

Assume that the amplitude can be expanded into *Isobar Amplitudes*

$$\mathcal{A}(\{\mathbf{p}',\mathbf{p}\}) = \sum_{j,k} \mathcal{A}_{kj}(\{\mathbf{p}',\mathbf{p}\}_{kj})$$
Two particles interact before interacting with spectator
$$\mathcal{A}_{kj} \to \sum_{s_i,s'} \sum_{\lambda_i,\lambda'_i} \mathcal{A}_{kj}(\sigma'_k, s, t_{jk}, \sigma_j) Y^*_{s_k}(\Omega_k) Y_{s_j}(\Omega_j)$$

Sum over all allowed isobars

Factorizes the sub-energy rescattering

$$\mathcal{A}_{kj}(\sigma'_k, s, t_{jk}, \sigma_j) = \frac{1}{D_k(\sigma'_k)} \widehat{\mathcal{A}}_{kj}(\sigma'_k, s, t_{jk}, \sigma_j) \frac{1}{D_j(\sigma_j)}$$

$$\sum_{\substack{2 \to 2 \text{ Rescattering}}} \widehat{\mathcal{A}}_{ij}(\sigma_j) = N_j(\sigma_j)/D_j(\sigma_j)$$

+

A. Jackura, Indiana University (ajackura@indiana.edu)

+

A. Jackura, Indiana University (ajackura@indiana.edu)

We can split the imaginary part into discontinuities across all variables

Need to be careful on which direction we approach the real axis from the complex planes

$$2i \operatorname{Im} \widehat{\mathcal{A}}_{kj}(\sigma'_{k}, s, t_{jk}, u_{jk}, \sigma_{j}) = \Delta_{\sigma'_{k}} \widehat{\mathcal{A}}_{kj}(s_{+}, t_{jk_{+}}, u_{jk_{+}}, \sigma_{j_{+}}) + \Delta_{s} \widehat{\mathcal{A}}_{kj}(\sigma'_{k_{-}}, t_{jk_{+}}, u_{jk_{+}}, \sigma_{j_{+}}) + \Delta_{t_{jk}} \widehat{\mathcal{A}}_{kj}(\sigma'_{k_{-}}, s_{-}, u_{jk_{+}}, \sigma_{j_{+}}) + \Delta_{u_{jk}} \widehat{\mathcal{A}}_{kj}(\sigma'_{k_{-}}, s_{-}, t_{jk_{-}}, \sigma_{j_{+}}) + \Delta_{\sigma_{j}} \widehat{\mathcal{A}}_{kj}(\sigma'_{k_{-}}, s_{-}, t_{jk_{-}}, u_{jk_{-}})$$

22 >

$$x_{\pm} = x \pm i\epsilon$$

We can split the imaginary part into discontinuities across all variables

Need to be careful on which direction we approach the real axis from the complex planes

$$x_{\pm} = x \pm i\epsilon$$

 p_j

23 >

<

A. Jackura, Indiana University (ajackura@indiana.edu)

 p_i

Will turn this into an *s*-channel cut via Partial Wave Projection $u_{jk} = u_{jk}(\sigma'_k, s, z_{jk}, \sigma_j)$

 p_j

23(>

<

A. Jackura, Indiana University (<u>ajackura@indiana.edu</u>)

Partial Wave Amplitudes

We now want to consider partial wave projections of the amplitude

To simplify the expressions, let's consider the case for J = 0, and spin-0 isobars

$$\mathcal{C}_{kj}(\sigma'_k, s, \sigma_j) = \int_{-1}^{+1} dz_{jk} \,\widehat{\mathcal{A}}_{kj}(\sigma'_k, s, t_{jk}(s, z_{jk}), \sigma_j)$$

We can proceed to project out the discontinuities

Note : The off-diagonal ($j \neq k$) amplitudes have a subtlety because of the OPE amplitude

25 >

<

A. Jackura, Indiana University (ajackura@indiana.edu)

Want partial wave projection of

$$\Delta_s \widehat{\mathcal{A}}_{kj}(\sigma_{k'}, s_+, u_{jk_+}, \sigma_{j_+}) + \Delta_{u_{jk}} \widehat{\mathcal{A}}_{kj}(\sigma_{k'}, s_-, u_{jk_+}, \sigma_{j_+})$$

$$u_{jk+} = u_{jk} + i\epsilon \qquad s + t_{jk} + u_{jk} = \sigma_j + \sigma'_k + m_j^2 + m_k^2$$
$$u_{jk-} = u_{jk} - i\epsilon \qquad s \pm i\epsilon \implies u_{jk} \mp i\epsilon$$

$$\Delta_{s}\widehat{\mathcal{A}}_{kj}(\sigma_{k'}, s_{+}, u_{jk_{+}}, \sigma_{j_{+}}) = \widehat{\mathcal{A}}_{kj}(\sigma_{k'}, s_{+}, u_{jk_{+}}, \sigma_{j}) - \widehat{\mathcal{A}}_{kj}(\sigma_{k'}, s_{-}, u_{jk_{+}}, \sigma_{j})$$

$$\Delta_{u_{jk}}\widehat{\mathcal{A}}_{kj}(\sigma_{k'}, s_{-}, u_{jk_{+}}, \sigma_{j_{+}}) = \widehat{\mathcal{A}}_{kj}(\sigma_{k'}, s_{-}, u_{jk_{+}}, \sigma_{j}) - \widehat{\mathcal{A}}_{kj}(\sigma_{k'}, s_{-}, u_{jk_{-}}, \sigma_{j})$$

Want partial wave projection of

$$\Delta_s \widehat{\mathcal{A}}_{kj}(\sigma_{k'}, s_+, u_{jk_+}, \sigma_{j_+}) + \Delta_{u_{jk}} \widehat{\mathcal{A}}_{kj}(\sigma_{k'}, s_-, u_{jk_+}, \sigma_{j_+})$$

$$u_{jk_{+}} = u_{jk} + i\epsilon$$

$$u_{jk_{-}} = u_{jk} - i\epsilon$$
Above Unitarity
Below OPE
$$s \pm t_{jk} + u_{jk} = \sigma_{i} + \sigma_{i}' + m_{i}^{2} + m_{k}^{2}$$
Below Unitarity
Below OPE
$$s \pm t_{jk} + u_{jk} = \sigma_{i} + \sigma_{i}' + m_{i}^{2} + m_{k}^{2}$$
Below Unitarity
Below OPE
$$\Delta_{s}\widehat{\mathcal{A}}_{kj}(\sigma_{k_{-}}, s_{+}, u_{jk_{+}}, \sigma_{j_{+}}) = \widehat{\mathcal{A}}_{kj}(\sigma_{k_{-}}, s_{+}, u_{jk_{+}}, \sigma_{j}) - \widehat{\mathcal{A}}_{kj}(\sigma_{k_{-}}, s_{-}, u_{jk_{+}}, \sigma_{j})$$

$$\Delta_{u_{jk}}\widehat{\mathcal{A}}_{kj}(\sigma_{k_{-}}, s_{-}, u_{jk_{+}}, \sigma_{j_{+}}) = \widehat{\mathcal{A}}_{kj}(\sigma_{k_{-}}, s_{-}, u_{jk_{+}}, \sigma_{j}) - \widehat{\mathcal{A}}_{kj}(\sigma_{k_{-}}, s_{-}, u_{jk_{+}}, \sigma_{j})$$

Below UnitarityBelow OPE Below OPE Below OPE Below OPE Below OPE

26 >

<

A. Jackura, Indiana University (ajackura@indiana.edu)

Want partial wave projection of

$$\Delta_s \widehat{\mathcal{A}}_{kj}(\sigma_{k'}, s_+, u_{jk_+}, \sigma_{j_+}) + \Delta_{u_{jk}} \widehat{\mathcal{A}}_{kj}(\sigma_{k'}, s_-, u_{jk_+}, \sigma_{j_+})$$

$$u_{jk_{+}} = u_{jk} + i\epsilon$$

$$u_{jk_{-}} = u_{jk} - i\epsilon$$

$$B(s_{+})$$

$$\Delta_{s}\hat{\mathcal{A}}_{kj}(\sigma_{k_{-}}, s_{+}, u_{jk_{+}}, \sigma_{j_{+}}) = \hat{\mathcal{A}}_{kj}(\sigma_{k_{-}}, s_{+}, u_{jk_{+}}, \sigma_{j}) - \hat{\mathcal{A}}_{kj}(\sigma_{k_{-}}, s_{-}, u_{jk_{+}}, \sigma_{j})$$

$$\Delta_{u_{jk}}\hat{\mathcal{A}}_{kj}(\sigma_{k_{-}}, s_{-}, u_{jk_{+}}, \sigma_{j_{+}}) = \hat{\mathcal{A}}_{kj}(\sigma_{k_{-}}, s_{-}, u_{jk_{+}}, \sigma_{j}) - \hat{\mathcal{A}}_{kj}(\sigma_{k_{-}}, s_{-}, u_{jk_{+}}, \sigma_{j})$$

$$B(s_{-})$$

$$Below Unitarity$$

$$Below Unitarity$$

$$Below Unitarity$$

$$Below Unitarity$$

$$Above OPE$$

$$Above OPE$$

26 >

<

A. Jackura, Indiana University (ajackura@indiana.edu)

$$\int_{-1}^{1} dz_{jk} \left[\Delta_{s} \widehat{\mathcal{A}}_{kj}(\sigma_{k'-}, s_{+}, u_{jk_{+}}, \sigma_{j_{+}}) + \Delta_{u_{jk}} \widehat{\mathcal{A}}_{kj}(\sigma_{k'-}, s_{-}, u_{jk_{+}}, \sigma_{j_{+}}) \right]$$

$$= B(s_{+}) - B(s_{-}) - (A(s_{-}) - B(s_{-}))$$

$$s$$
leads to discontinuity across s
$$\Delta_{s} C_{kj}(\sigma_{k'-}', s_{+}, \sigma_{j_{+}}) = \Delta_{s}[\text{Boxes}] - \Delta[\text{OPE}]$$

$$\Delta_{s} C_{kj}(\sigma_{k'-}', s_{+}, \sigma_{j_{+}}) = \Delta_{s}[\text{Boxes}] - \Delta[\text{OPE}]$$

$$\Delta_{\sigma_j} \underbrace{\sum_{p'_k} \xi_j}_{p_k} = i \sum_{r \neq j} \underbrace{\sum_{p'_k} \xi_j'}_{p'_k} \underbrace{\sum_{p'_k} \xi_r''}_{p_j}$$

Kinematics may require deformation of dispersive contours

$$\Delta_{\sigma_1} \mathcal{C}_{31}(\sigma_{3'-}, s_-, \sigma_{1+}) = i\rho_2(\sigma_{1+})N_1(\sigma_{1+}) \int d\sigma_3'' D_3^{-1}(\sigma_3'') \mathcal{C}_{33}(\sigma_{3-}, s_-, \sigma_{3'-})$$

Fix s, σ_3' , investigate contour in σ_1

Opportunities and Future Directions

A. Jackura, Indiana University (ajackura@indiana.edu)

As a first approximation, we consider that the isobars are "quasi-stable" \Rightarrow Effective $2\rightarrow 2$ system, with isobar decay correction in intermediate state

30(>

Effects of other terms can be estimated for cases where resonance is far from isobar-spectator threshold

As a first approximation, we consider that the isobars are "quasi-stable" \Rightarrow Effective $2\rightarrow 2$ system, with isobar decay correction in intermediate state

Assume that entire sub-energy dependence is purely isobar amplitude

$$\widehat{\mathcal{A}}_{kj}^J(\sigma'_k, s, \sigma_j) \approx \widehat{\mathcal{A}}_{kj}^J(s)$$

$$\frac{1}{2i} \Delta_s \stackrel{\xi'_k}{\underline{\quad}} = \frac{1}{2} \stackrel{\xi'_k}{\underline{\quad}} \stackrel{\xi''_n}{\underline{\quad}} \stackrel{\xi'''_n}{\underline{\quad}} \stackrel{\xi'''_n}{\underline{\quad}} \stackrel{\xi'''_n}{\underline$$

$$\operatorname{Im} \widehat{\mathcal{A}}_{kj}^{J}(s) = \sum_{n} \int_{\sigma_{th}^{(n)}}^{(\sqrt{s}-m_{n})^{2}} d\sigma_{n}^{\prime\prime} \rho_{2}(s, \sigma_{n}^{\prime\prime}, m_{n}^{2}) \operatorname{Im} D_{n}^{-1}(\sigma_{n}^{\prime\prime}) \widehat{A}_{kn}^{J*}(s) \widehat{A}_{nj}^{J}(s)$$
$$\equiv \sum_{n} \widetilde{\rho}_{n}(s) \widehat{A}_{kn}^{J*}(s) \widehat{A}_{nj}^{J}(s) \qquad \text{Quasi - 2} \rightarrow 2 \text{ Unitarity}$$

Have turned 3-body system into quasi- $2 \rightarrow 2$ coupled-channel system

Im
$$\widehat{\mathcal{A}}_{kj}^{J}(s) = \sum_{n} \widetilde{\rho}_{n}(s) \widehat{\mathcal{A}}_{kn}^{J*}(s) \widehat{\mathcal{A}}_{nj}^{J}(s)$$

Can parameterize with *N/D* method

Isobar decay effects encoded into quasi-2-body phase space

$$\widetilde{\rho}_{n}(s) = \int_{\sigma_{th}^{(n)}}^{(\sqrt{s}-m_{n})^{2}} d\sigma_{n}'' \rho_{2}(s,\sigma_{n}'',m_{n}^{2}) \operatorname{Im} D_{n}^{-1}(\sigma_{n}'')$$

Introduces additional cuts in s-plane (Woolly cuts)

3π at COMPASS

COMPASS has largest dataset for 3π resonance production

JPAC in collaboration with COMPASS, developing analytic model to extract resonance poles for partial wave intensities

Interested in $J^{PC} = 2^{+}$, 1⁺⁺ to investigate π_2 - and a_1 -systems, and non-resonant production mechanisms (*e.g.* Deck) π^-

Implement quasi-2-body unitarity -High-energy process (190 GeV π beam), can assume factorization of nuclear recoil

Long-range

A. Jackura, Indiana University (ajackura@indiana.edu)

Tau-decay

The resonance $a_1(1260)$ pole position can be tested with the quasi-two-body model

35 >

<

A. Jackura, Indiana University (ajackura@indiana.edu)

X(3872) is the most well-known XYZ state - Still controversial on the nature of the state (mesonic molecule, tetraquark, ...)

Primary decay mode: $X(3872) \rightarrow \overline{D}D\pi$

Investigate effects of single pion exchange - Unitarization may result in pole

36 >

Outlook and Future Directions

Unitarity and Analyticity give consistent constraints on reaction amplitudes

 $3\rightarrow 3$ relations involve functions taken at different points in the complex planes - difficult to find an 'easy' parameterization

Work on-going to investigate the analytic structure, and derive a set of relations one could use for various parameterizations

Certain approximations (narrow-width, etc.) may potentially lead to some parameterizations that can be used in analyses

