Systematics in the HAL QCD method and diagnoses of the direct method

Takumi Iritani (RIKEN) Feb. 5-9 2018 @ INT-18-70W "Multi-Hadron Systems from Lattice QCD"

HAL QCD Collaboration Sinya Aoki (Wed.), K. Sasaki, T. Aoyama, **Daisuke Kawai (Fri.)**, T. Miyamoto (YITP), T. Hatsuda, **Takumi Doi (Thu.)**, **TI**, S. Gongyo, T. M. Doi (RIKEN), T. Inoue (Nihon Univ.), N. Ishii, Y. Ikeda, H. Nemura, K. Murano (RCNP), F. Etminan (Univ. of Birjand)

Contents

Intro.: Direct Method vs. HAL QCD Method Part I: Systematics in the HAL QCD Method Part II: Diagnoses of the Direct Method

Challenges in Multi-Baryon Systems

measurement of **ground state** from **temporal correlation** $C_{NN}(t) = c_0 \exp(-E_0^{NN}t) + c_1 \exp(-E_1^{NN}t) + \cdots \simeq c_0 \exp(-E_0^{NN}t)$

• S/N problem (**A**: mass number) **Parisi '84, Lepage '89**

 $S/N \sim \exp[-A \times (m_N - (3/2)m_\pi) \times t]$

2 Hadrons in Lattice QCD (1) Direct Method

- **temporal** correlation of the two-hadron $R(t) \equiv C_{BR}(t)/\{C_R(t)\}^2$
- $\frac{1}{4}$ Euclidean time
4 Euclidean tim • energy shift from **plateau** of
 $\Delta E_{\text{eff}}(t) = \log \frac{R(t)}{R(t+1)} \longrightarrow E_{BB}^{L} - 2m_{B}$ 25 **g.s. saturation is mandatory!** 由 effective energy shift 20 呂 plateau fitting $\Delta E_{\rm eff}(t)$ [MeV] 15 呂 10 由 5 国 ex. $L = 8$ fm @ phys. mass 量 Ω 団 $\delta E_{\text{el}} \simeq 25 \text{ MeV} \longrightarrow t > 10 \text{ fm}$ -5 -10 -15 $S/N \sim \exp[-2(m_N - (3/2)m_\pi)t]$ Ω 5 10 15 20 25 30 $t[a]$ $\longrightarrow 10^{-32}$ extremely difficult! \boldsymbol{A}

 $L \$

2 Hadrons in Lattice QCD (2) HAL QCD Method

Ishii-Aoki-Hatsuda '06 Hadrons to **A**tomic nuclei from **L**attice **QCD**

• **spatial** correlation of the two-hadron

Nambu-Bethe-Salpeter wave func.
 $\psi_k(\vec{r}) = \langle 0|B(\vec{r})B(\vec{0})|B(\vec{k})B(-\vec{k});\text{in}\rangle$

- **asymptotic region** $r \gg R$ $\psi_k(\vec{r}) \simeq C \sin(kr - l\pi/2 + \delta(k))/(kr)$
- \bullet interacting region $r < R$

$$
(\nabla^2 + k^2)\psi_k(\vec{r}) = m \int d\vec{r'} U(\vec{r}, \vec{r'}) \psi_k(\vec{r'})
$$

energy-indep. & non-local potential & faithful to δ $U(\vec{r},\vec{r'}) = \sum_{\mu} [E_{p} - H_{0}] \psi_{p}(\vec{r}) \psi_{p}^{*}(\vec{r'})$ $|\vec{p}| \leq p_{\text{th}}$

5 **HAL QCD method: NBS wave func. → U(r,r') → observables**

"Time-dependent" HAL QCD Method (1) Ishii for HAL QCD '12

$$
R(\vec{r},t) \equiv \langle 0|T\{B(\vec{x}+\vec{r},t)B(\vec{x},t)\}\overline{J}(0)|0\rangle/\{C_B(t)\}^2
$$

=
$$
\sum_n a_n \psi_{W_n}(\vec{r})e^{-(W_n-2m_B)t} + \mathcal{O}(e^{-\Delta W_{th}t})
$$

g.s. & scattering state NBS funcs. satisfy

$$
\mathcal{E}_{\mathcal{P}_{\mathcal{P}_{\mathcal{P}_{\mathcal{P}_{\mathcal{P}}}}}}[E_{W_{0}} - H_{0}]\psi_{W_{0}}(\vec{r}) = \int d\vec{r}'U(\vec{r},\vec{r}')\psi_{W_{0}}(\vec{r}')\n\begin{matrix}\n\frac{\partial \mathcal{D}}{\partial \vec{r}} \\
\frac{\partial \vec{r}}{\partial \vec{r}} \\
\frac{\partial \vec{r}}{\partial \vec{r}} \\
\frac{\partial \vec{r}}{\partial \vec{r}} \\
\frac{\partial \vec{r}}{\partial \vec{r}}\n\end{matrix}
$$

$$
\mathcal{O}(e^{-\delta E_{\text{inel}}t}) \ll \mathcal{O}(e^{-\delta E_{\text{el}}t})
$$

sink

Euclidean time

 $L \$

with **elastic saturation (exponentially easier** than **g.s. saturation!)**

$$
\left[\frac{1}{4m_B}\frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} - H_0\right]R(\vec{r},t) = \int d\vec{r}'U(\vec{r},\vec{r}')R(\vec{r}',t)
$$

"Time-dependent" HAL QCD Method (2)

$$
\left[\frac{1}{4m_B}\frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} - H_0\right]R(\vec{r},t) = \int d\vec{r'}U(\vec{r},\vec{r'})R(\vec{r'},t)
$$

local pot. by *velocity expansion* of **E-indep.** & **non-local** pot. **U(r,r')** $U(\vec{r},\vec{r'}) = [V_0(\vec{r}) + V_1(\vec{r})\mathbf{L} \cdot \mathbf{S} + V_2(\vec{r})\nabla^2 + \cdots] \delta(\vec{r}-\vec{r'})$

previous results by **HAL QCD** mainly employ

"**leading order approximation**" of *wall-type quark source*
 $U(\vec{r}, \vec{r'}) \simeq V_e^{\text{LO}}(\vec{r}) \delta(\vec{r} - \vec{r'})$

$$
U(\vec{r},\vec{r'})\simeq V_0^{\text{LO}}(\vec{r})\delta(\vec{r}-\vec{r'})
$$

Q: Is this expansion reasonable & converged?

7

NN Systems from Lattice QCD

- *Inconsistency between these methods*
- *It was a long-standing problem in lattice QCD*.

Fundamental Problem in Direct Method: Fake Plateau

Simple plateau fitting is challenging.

ground state saturation requires huge temporal correlation

Check Aoki's Talk (Wed)
 Normalous behavior."
 previous studies show "anomalous behavior." Normality Check Aoki's Talk (Wed)

Part I: Systematics in the HAL QCD Method Ref. **TI** for HAL QCD Coll., PoS(Lattice 2016) 109, arXiv:1610.09763. & in prep

Next: Reliability of the HAL QCD Method

1. convergence of velocity expansion 2. inelastic state contamination

Setup & Channel: $E E(^{1}S_{0})$ at $m_{\pi} = 0.51$ GeV

better signal & the same SU(3) rep. as $NN(^1S_0)$

time-dep. HAL QCD method

$$
\frac{1}{4m_B} \frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} - H_0 \left[R(\vec{r}, t) = \int d\vec{r'} U(\vec{r}, \vec{r'}) R(\vec{r'}, t) \right]
$$

local pot. by *velocity expansion* of **E-indep.** & **non-local** pot. **U(r,r')**

LO approximation (**standard in previous. HAL QCD works**) $U(\vec{r},\vec{r'})\simeq V_0^{\text{LO}}(\vec{r})\delta(\vec{r}-\vec{r'})$

N²LO approximation & **V₂(r)</sub>**
 $U(\vec{r}, \vec{r'}) \simeq [V_0^{\text{N}^2\text{LO}}(\vec{r}) + V_2^{\text{N}^2\text{LO}}(\vec{r})\nabla^2]\delta(\vec{r} - \vec{r'})$

→ Check: higher order correction of the HAL QCD pot. by using **wall-type** & **smeared-type** quark sources

Time Dependence of the Spatial Correlation

time-dep. HAL QCD method is essential!

 $t = 14$

 $t = 14$

Systematic in LO Potential

- **Wall** src. = time-indep.
- **Smeared** src. → **Wall** src.

t-dep. implies systematics from truncation

Higher Order Approximation (N2LO) (1)

$$
U(r,r') \simeq \left[V_0^{\text{N}^2\text{LO}}(r) + V_2^{\text{N}^2\text{LO}}(r)\nabla^2\right]\delta(r-r')
$$

Higher Order Approximation (N2LO) (2)

$$
U(r,r') \simeq \left[V_0^{\text{N}^2\text{LO}}(r) + V_2^{\text{N}^2\text{LO}}(r)\nabla^2\right]\delta(r-r')
$$

Phase Shift and Uncertainties in Velocity Expansion

 $V_0^{\text{N}^2\text{LO}}$

- **Wall src. LO approx.** (standard of HAL QCD studies) **works well at low energy.** 40
- **V₂ correction** at high energy

Time-dependence of Potential (N2LO)

N2LO velocity expansion $U(r, r') \simeq V_0^{N^2LO}(r) + V_2^{N^2LO}(r)\nabla^2 |\delta(r - r')|$ **t-indep.** => convergence of the velocity expansion up to **N2LO**

Part I: Systematics in the HAL QCD Method Ref. **TI** for HAL QCD Coll., PoS(Lattice 2016) 109, arXiv:1610.09763. & in prep

1. convergence of velocity expansion 2. inelastic state contamination

t-dep. of the Wall src.

single saturation is later than **smeared src.**

potential & observable are stable even at early time

Intermission: "Correct" finite volume method analysis for two-baryon in lattice QCD

Lüscher's Method from HAL QCD: G.S. Energy

eigenvalue at **finite box L³ with HAL QCD pot.**
 $[H_0 + V_0(r) + V_2(r)\nabla^2]\Psi = \Delta E \Psi$

$$
\Delta E_0^L \simeq -\frac{2\pi a_0}{\mu L^3} \left[1 + c_1 \frac{a_0}{L} + c_2 \left(\frac{a_0}{L} \right)^2 \right]
$$

attractive but unbound

scattering length $a_0 \equiv \lim_{k \to 0} \frac{\tan \delta(k)}{k}$ $= 0.93(29)$ fm

finite vol. energy shift $\Delta E_L \longrightarrow k \cot \delta(k)$ by Lüscher's formula

Part II: Diagnosis of the Fake Plateaux in the Direct Method

Ref.

TI for HAL QCD Coll., PoS(Lattice 2016) 109, arXiv:1610.09763. & in prep.

Contamination and Fake Plateaux

Final Check: magnitudes of the contamination & origin of the fake plateaux

Eigenfunctions & Eigenvalues

Solving $H_0 + V(r)$ in the finite box

Eigenmode Decomposition of the Spatial Correlator

Overlap of Excited States

$$
R^{\text{wall/smean}}(\vec{r}, t) = \sum_{n} a_n^{\text{wall/smean}} \Psi_n(\vec{r}) e^{-\Delta E_n t}
$$

"**smeared src.**" has large overlaps with **scat. states**.

Contaminations of Excited States

$$
R(t) = \sum_{n} b_n^{\text{wall/smear}} e^{-\Delta E_n t} \text{ with } b_n^{\text{wall/smear}} = a_n^{\text{wall/smear}} \sum_{\vec{r}} \Psi_n(\vec{r})
$$

b_n: magnitude of contamination in $\Delta E_{eff}(t)$

Origin of Fake Plateaux and Saturation

$$
\Delta E_{\text{eff}}^{\text{wall/smean}}(t) \equiv \log \frac{R(t)}{R(t+1)} = \log \frac{\sum_{n} b_{n}^{\text{wall/smean}} \exp(-\Delta E_{n}t)}{\sum_{n} b_{n}^{\text{wall/smean}} \exp(-\Delta E_{n}(t+1))}
$$

"direct measurement" is reproduced by low-modes

g.s. saturation for **smeared src. ~ 10 fm !!!**

•

Sink Op. Projection with Proper Eigenmode (1)

• **"correct sink operator"**

$$
R^{(n)}(t) = \sum_{\vec{x}, \vec{y}} \Psi_n(|\vec{x} - \vec{y}|) \langle B(\vec{x}, t)B(\vec{y}, t) \overline{J_{BB}}(0) \rangle / \{C_B(t)\}^2
$$

Sink Op. Projection with Proper Eigenmode (2)

• **"correct sink operator"** —> "**true plateau**" appears $R^{(n)}(t) = \sum \Psi_n(|\vec{x}-\vec{y}|)\langle B(\vec{x},t)B(\vec{y},t)\overline{\mathcal{J}_{BB}}(0)\rangle/\{C_B(t)\}^2$ \vec{x}, \vec{y} 5 100 $\frac{8}{4}$ $\frac{8}{5}$ 80 $\overline{0}$ $\frac{1}{2}$ Ω $\Delta E_{\text{eff}}(t)$ [MeV] $L =$ $\Delta E_{\rm eff}(t)$ [MeV] L 60 ℬ 水 紁 $\boldsymbol{\Omega}$ -5 40 20 ΔE_0 g.s. proj. wall **KD** $X²$ g.s. proj. smeared 1st proj. wall ΔE_1 direct wall src. direct smeared src. 1st proj. smeared -15 Ω 13 10 10 12 13 15 11 12 14 15 11 14 $t[a]$ $t[a]$

HAL QCD = **Lüscher's method** with *proper projection* **≠ naive plateau fitting**

Summary

Direct Method vs. HAL QCD Method

- **•** HAL QCD method can control **scattering states.**
- We checked
	- **• The velocity expansion of non-local pot.** has **good convergence at low energies.**
	- **• Leading order expansion of the wall src.** (standard of HAL QCD studies) **works well.**
	- **• The inelastic state contamination** is **under control.**
- We show the origin of the fake plateau in the direct method comes from the scattering state contamination.
- **HAL QCD** results at (almost) **physical point** Next Talk by Takumi Doi

Volume Dep. of the Fake Plateaux (1)

- **Scattering state gap** 1/L2
- scat. states becomes severe for a larger volume

Volume Dep. of the Fake Plateaux (2)

- **Volume indep.** does not mean **ground state saturation**.
- **Volume dep.** appears at later time.

Sink Operator Dependence of the Plateaux

- **smeared src.** depend on "**sink**"
- **wall src.** is stable

Lüscher's Finite Volume Method & Bound State

1. Lüscher's formula **2.** Effective Range Expansion (**ERE**) $k \cot \delta_0(k) = \frac{1}{\pi k}$ πL ∇ $n \in \mathbb{Z}^3$ 1 $|{\bf n}|^2 - (kL/2\pi)^2$

Volume Independence of the Potential

• The potential from $L = 40$, 48 and 64 are consistent.

$NN(^{1}S_{0})$ System at $M_{Pl} = 510$ MeV (1) LO Approx.

$$
U(r,r') \simeq V_0^{\text{LO}}(r)\delta(r-r')
$$

Quantitatively, the same as ΞE (1S₀)

NN(1S0) System at MPI = 510 MeV (2) N2LO Approx.

$$
U(r,r') \simeq \left[V_0^{\rm N^2LO}(r) + V_2^{\rm N^2LO}(r) \nabla^2 \right] \delta(r-r')
$$

• Quantitatively, the same as $EE(1S₀)$

NN(1S0) System at MPI = 510 MeV (3) Phase Shift

- Quantitatively, the same as ΞE (1S₀)
- $NN(1S_0)$ is **unbound** at this pion mass.
- Wall src. LO approx. is consistent at low energy

NN(1S0) System at MPI = 510 MeV (4) Proton Mass

- LO approx. wall src. potential is stable against time.
- Inelastic contamination is under control.

Fake Plateaux for Binding System

