Some multi-hadron results from CLS ensembles

Ben Hörz (Johannes Gutenberg-Universität Mainz) INT Workshop *Multi-Hadron Systems from Lattice QCD* February 5, 2018

PRECISION

EXPLORATION

Spectroscopy techniques

[plot by A. Gérardin, cf. 1710.10072]

[plot by A. Gérardin, cf. 1710.10072]

[plot by A. Gérardin, cf. 1710.10072]

2/17

[plot by A. Gérardin, cf. 1710.10072]

2/17

[plot by A. Gérardin, cf. 1710.10072]

We need good control over our own systematics!

INVESTIGATING SYSTEMATIC EFFECTS

goal: survey systematics for the ρ resonance

[full CLS landscape: Mohler et al, 1712.04884]

Coordinated Lattice Simulations

(with C. Andersen, J. Bulava, C. Morningstar)

- \cdot lattice spacing a
- pion mass m_{π}
- higher partial waves
- residual (exponential) FV effects

[Bruno et al, 1411.3982, 1608.08900]

- $\cdot N_{\mathrm{f}} = 2 + 1$ nonpert. $\mathcal{O}(a)$ -improved Wilson
- chiral trajectory along $\operatorname{Tr} M = \operatorname{const}$

CUTOFF EFFECTS

Breit-Wigner resonance shape

 $\frac{m_{\rho}/m_{\pi}}{a = .076 \,\text{fm}} \frac{g_{\rho\pi\pi}}{2.712(15)} \frac{\chi^2/\text{dof}}{5.92(14)} \frac{1.22}{1.22}$

CUTOFF EFFECTS

Breit-Wigner resonance shape

	$m_{ ho}/m_{\pi}$	$g_{\rho\pi\pi}$	χ^2/dof
$a = .076\mathrm{fm}$	2.712(15)	5.92(14)	1.22
$a = .064 \mathrm{fm}$	2.741(16)	5.97(10)	0.75

Breit-Wigner parameters at various m_π

[scale setting: Bruno et al, 1608.08900]

 \cdot remarkably little chiral dependence of $m_{
ho}$

(on $\operatorname{Tr} M = \operatorname{const} \operatorname{trajectory})$

• relevance of cutoff effects remains to be seen

(low statistics at a = 0.05 fm – autocorrelation increasingly important!)

• final analysis currently under way

PREVIEW: TIMELIKE PION FORM FACTOR

• example of 0-to-2 matrix element

(parametrization of $\delta_1(E^*)$ required as input)

• so far: pert. O(a) improvement, nonpert. renormalization (improvement coefficient could be as large as $c_V \approx -0.25$)

[Gérardin, Harris, Meyer, priv. comm.]

delicate analysis (currently ongoing)

PREVIEW: TIMELIKE PION FORM FACTOR

• example of 0-to-2 matrix element

(parametrization of $\delta_1(E^*)$ required as input)

- so far: pert. $\mathcal{O}(a)$ improvement, nonpert. renormalization (improvement coefficient could be as large as $c_V \approx -0.25$)

[Gérardin, Harris, Meyer, priv. comm.]

delicate analysis (currently ongoing)

Extraction of resonant meson-baryon scattering amplitudes

- at a more exploratory stage
- complicated by kinematics (inelastic thresholds!) ...

$$m_{\pi}\sqrt{1+\left(\frac{2\pi}{m_{\pi}L}\right)^2}$$

at $m_\pi L \approx 3.6$, one unit of momentum is worth an extra pion

• ...and rotational symmetry breaking in a box

Extraction of resonant meson-baryon scattering amplitudes

- at a more exploratory stage
- complicated by kinematics (inelastic thresholds!) ...

 $m_{\pi}\sqrt{1+\left(rac{2\pi}{m_{\pi}L}
ight)^2}$

at $m_\pi L \approx 3.6$, one unit of momentum is worth an extra pion

• ...and rotational symmetry breaking in a box

Two case studies

- · $\Delta(1232)$
- · $\Lambda(1405)$

(with C. Andersen, J. Bulava, C. Morningstar)

(with JB, M. Hansen, D. Mohler, CM, H. Wittig)

 $\Delta(1232)$: I = 3/2 p-wave N- π scattering

J^P	[000]	[00n]	[0nn]	[nnn]	
$\frac{1}{2}^{+}$	G_{1g}	G_1	G	G	$\Delta(1750)$ (?)
$\frac{1}{2}$ -	G_{1u}	G_1	G	G	$\Delta(1620)$
$\frac{3}{2}^{+}$	H_g	$G_1 \oplus G_2$	2G	$F_1 \oplus F_2 \oplus G$	$\Delta(1232)$, $\Delta(1600)$
$\frac{3}{2}$ -	H_u	$G_1 \oplus G_2$	2G	$F_1 \oplus F_2 \oplus G$	$\Delta(1700)$

 $\Box\,$ disentangle various $N-\pi$ amplitudes

 $\hfill\square$ avoid mixing with lower partial wave

[Morningstar et al, 1707.05817]

[Goeckeler et al, 1206.4141]

 $\Delta(1232)$: I = 3/2 p-wave N- π scattering

J^P	[000]	[00n]	[0nn]	[nnn]	
$\frac{1}{2}^{+}$	G_{1g}	G_1	G	G	$\Delta(1750)$ (?)
$\frac{1}{2}$ -	G_{1u}	G_1	G	G	$\Delta(1620)$
$\frac{3}{2}^{+}$	$\left(H_{g} \right)$	$G_1 \oplus G_2$	2G	$F_1 \oplus F_2 \oplus G$	$\Delta(1232)$, $\Delta(1600)$
$\frac{3}{2}$ -	H_u	$G_1 \oplus G_2$	2G	$F_1 \oplus F_2 \oplus G$	$\Delta(1700)$

□ disentangle various $N - \pi$ amplitudes ✓ avoid mixing with lower partial wave

[Morningstar et al, 1707.05817]

[Goeckeler et al, 1206.4141]

I=3/2~N- π scattering amplitude

[Andersen et al, 1710.01557]

• Breit-Wigner parametrization

 $m_{\Delta} = 1344(20) \,\mathrm{MeV} \qquad g_{\Delta N\pi}^{\mathrm{BW}} = 19.0(4.7) \qquad \chi^2/\mathrm{dof} = 1.11$

+ $\Delta(1232)$ – the 'ho of baryons'

J^P	[000]	[00n]	[0nn]	[nnn]	
$\frac{1}{2}^{+}$	G_{1g}	G_1	G	G	Λ , $\Lambda(1600)$
$\frac{1}{2}$ -	G_{1u}	G_1	G	G	$\Lambda(1405)$, $\Lambda(1670)$
$\frac{3}{2}$ +	H_{g}	$G_1 \oplus G_2$	2G	$F_1 \oplus F_2 \oplus G$	$\Lambda(1890)$
$\frac{3}{2}$ -	H_u	$G_1 \oplus G_2$	2G	$F_1 \oplus F_2 \oplus G$	$\Lambda(1520)$, $\Lambda(1690)$

 $I=0,\,S=-1~\Sigma^{-}\pi$ / N- \bar{K} (/ $\Lambda\text{-}\eta)$ scattering

- small kinematic window below three-particle threshold
- coupled-channel system
- complicated partial wave mixing pattern

The whole two-particle machinery will be required!

Tentative $\Lambda(1405)$ lessons

- no FV states associated with $\Lambda(1520)\,3/2^-$ & $\Lambda(1600)\,1/2^+$
 - same pattern in previous studies

[Edwards et al, 1212.5236; Engel et al, 1301.4318]

 \cdot Tr M = const here

[ChPT predictions: Lutz et al, 1801.06417]

- if corroborated, absence of FV states constrains models (check of interpolator basis required)
- high precision required for Lüscher-style analysis (narrow kinematic range: $5.2 \le E^*/m_\pi \le 5.8$)

A few words on lattice spectroscopy

- systematic analysis uncertainties
- \cdot correlation function construction in large volumes

Systematic analysis uncertainties

diagonalization procedure

- GEVP with fixed diagonalization times
- window method
- \cdot fixed t_0 method
- Prony methods
- ...
- fit procedure
 - single-exponential
 - two-exponential
 - multi-state fits
 - ratio fits
 - ...

• ...

Systematic analysis uncertainties

· diagonalization procedure

- GEVP with fixed diagonalization times
- window method
- fixed t₀ method
- Prony methods

Controlling excited-state contamination

- Ilt procedure
 - single-exponential
 - two-exponential
 - multi-state fits
 - ratio fits
 - ...

I = 1 ' $\pi(0)\pi(1)$ correlator' d = [001] A_1^+ $n_{\rm op} = 1$ singleExp ratio $R(t) = C(t) / (C_{\pi(0)}(t)C_{\pi(1)}(t))$ 0.295 0.295 0.290 0.290 ш _{0.285}, ш _{0.285} і +++++0.280 0.280 + + + + + 0.275 0.275 10 12 t_{min} 14 16 10 12 t_{min} 14 16 18 4 20 4

10 12 t_{min}

ŝ

16

I = 1 ' $\pi(0)\pi(1)$ correlator' d = [001] A_1^+ $n_{\rm op} = 2$ singleExp ratio $R(t) = C(t) / (C_{\pi(0)}(t)C_{\pi(1)}(t))$ 0.295 0.295 0.290 0.290 س _{0.285} ш _{0.285} і ++++ 0.280 0.280 0.275 0.275

10 12 14 t_{min}

4

18 20

 $I=1 \quad `\pi(0)\pi(1) \text{ correlator'} \quad \mathbf{d}=[001] \quad A_1^+$ $n_{\rm op} = 3$ singleExp ratio $R(t) = C(t) / (C_{\pi(0)}(t)C_{\pi(1)}(t))$ 0.295 0.295 0.290 0.290 س _{0.285} ш _{0.285} і +++ 0.280 0.280 0.275 0.275 10 12 t_{min} 16 10 12 t_{min} 14 18 20 ŝ 4

All excited-state contamination is not equal

- GEVP can only help with 'multi-hadron excited states'
- $\cdot\,$ should use <code>improved</code> single-hadron operators to build MH

[Shultz et al, 1501.07457; Woss, Thomas, 1612.05437; Berkowitz et al, 1710.05642]

• ...but how (for light pions)?

PROPAGATOR TECHNOLOGY

[Bulava et al, 1710.04545]

- large volumes crucial for small pion masses (exponential effects, energy resolution)
- challenge for treatment of quark propagation (efficient techniques also relevant for 3-particle spectrum)
- ideally: precision & generality of distillation
 @ cost of stochastic LapH

- 2-particle results range from robust to exploratory
- · control over 3-particle thresholds desirable
- spectroscopy practitioners: let us not forget about furthering our craft