Two-baryon spectroscopy and distillation

Jeremy Green

NIC, DESY, Zeuthen

Multi-Hadron Systems from Lattice QCD Institute for Nuclear Theory February 5–9, 2018

- 1. Previous study using smeared point sources
- 2. Distillation and two-baryon correlators
- 3. Previous study revisited with distillation
- 4. Preliminary results with $N_f = 3$
- 5. Challenges
- 6. Outlook

Mainz project

Goal: study the conjectured H dibaryon

- \triangleright 0⁺ SU(3) singlet, quark content *uuddss*
- Initially using $N_f = 2$ ensembles from CLS and a quenched strange.

People:

- \blacktriangleright Hartmut Wittig
- ▶ current Mainz postdoc: Andrew Hanlon
- \triangleright former Mainz postdocs: Anthony Francis, JG, Parikshit Junnarkar, Chuan Miao, Thomas Rae

Preliminary work presented at conferences: C. Miao et al., PoS LATTICE2013 440 [1311.3933] JG et al., PoS LATTICE2014 107 [1411.1643] P. Junnarkar et al., PoS LATTICE2015 082, PoS CD15 079 [1511.01849] P. Junnarkar et al., talk at Confinement XII (2016)

Final results from point sources are in preparation.

Interpolating operators

Use smeared quark fields. Consider two kinds of operators:

1. Hexaquark,

$$
O(t,\vec{p}) = \sum_{\vec{x}} e^{-i\vec{p}\cdot\vec{x}} (qqqqqq), (t,\vec{x}).
$$

- \blacktriangleright Looks like bag-model picture of H dibaryon.
- \blacktriangleright Under broken SU(3), two operators couple: singlet H^1 and 27-plet H^{27} .
- 2. Two-baryon,

$$
O(t, \vec{p}) = \sum_{\vec{x}, \vec{y}} e^{-i\vec{p}_1 \cdot \vec{x}} e^{-i\vec{p}_2 \cdot \vec{y}} (qqq)(t, \vec{x}) (qqq)(t, \vec{y}), \quad \vec{p}_1 + \vec{p}_2 = \vec{p}.
$$

- \blacktriangleright Looks more like noninteracting state.
- **Fi** Three relevant flavour combinations $\Lambda\Lambda$, $\Sigma\Sigma$, and $N\Xi$. Can rotate to SU(3) basis to get BB^1 , BB^8 , BB^{27} .
- Many combinations of (\vec{p}_1, \vec{p}_2) possible.
- \triangleright Can't evaluate at a point source.

Using a (smeared) point-source propagator, we can compute:

Can't compute $\langle BB(t)BB^{\dagger}(0) \rangle$ since it is not local on the source timeslice.

Variational method

Given N sink operators \tilde{O}_i and source operators O_j , compute the correlator matrix matrix

$$
C_{ij}(t) = \left\langle \tilde{O}_i(t) O_j^{\dagger}(0) \right\rangle.
$$

It has the spectral decomposition

$$
C_{ij}(t)=\sum_n \tilde{Z}_i^{(n)} Z_j^{(n)*} e^{-E_n t}.
$$

Solve the GEVP,

$$
C(t + \Delta)v^{(n)}(t) = \lambda_n(t)C(t)v^{(n)}(t),
$$

$$
\tilde{v}^{(n)\dagger}(t)C(t + \Delta) = \lambda_n(t)\tilde{v}^{(n)\dagger}(t)C(t)
$$

- $\tilde{v}^{(n)\top}(t)C(t + \Delta) = \lambda_n(t)\tilde{v}^{(n)\top}(t)C(t)$

If only N states contribute, then $v^{(n)}$ and $\tilde{v}^{(n)}$ are the dual vectors to $Z^{(n)}$ and $\tilde{Z}^{(n)}$, and $\lambda_n = e^{-E_n \Delta}$.
- If $\tilde{O}_i = O_i$, then C is Hermitian, $v = \tilde{v}$, and

$$
E_n^{\mathrm{eff}}(t) \equiv \frac{-1}{\Delta}\log\lambda_n = E_n + O(e^{-(E_{N+1}-E_n)t}).
$$

- \triangleright Old CLS ensembles: $N_f = 2$, $O(a)$ -improved Wilson fermions. Mainly show two of them with $a = 0.0658$ fm, $L = 2.1$ fm.
	- E1: m_{π} = 960 MeV, quenched $m_s = m_{ud}$.
	- ► E5: $m_{\pi} = 440$ MeV, quenched $m_s \approx m_s^{\text{phys}}$.
- Increase number of source operators using two different smearing widths.
- Apply GEVP to 2×2 or 4×4 square subsets of the C_{ij} at a fixed time to find v, \tilde{v} . Then compute the effective energy of the projected correlators $\Lambda_n(t) \equiv \tilde{v}^{(n)\dagger} \mathbf{C}(t) v^{(n)}$:

$$
E_n^{\text{eff}}(t) \equiv \frac{1}{\Delta} \log \frac{\Lambda_n(t)}{\Lambda_n(t+\Delta)}.
$$

Effective energy, $SU(3)$ singlet

Ground state from 2 \times 2 GEVP. Fixed {O_i}, varying { \tilde{O}_i }.

Effective energies, broken $SU(3)$

For broken SU(3), find two low-lying levels. One couples mostly to singlet operators, the other mostly to 27-plet.

- \blacktriangleright Two-baryon operators seem more relevant than hexaquark operators.
- It is messier to analyze non-Hermitian correlator matrices.

Therefore we want a Hermitian matrix of correlators with two-baryon operators at source and sink.

One method for efficiently computing this: distillation

Distillation

We construct interpolating operators using smeared quark fields $\tilde{q}(\vec{x}) = S(\vec{x},\vec{y})q(\vec{y})$. Common Gaussian-like smearing:

$$
S = S_{\text{Wuppertal}} \approx e^{\sigma \Delta}.
$$

Suppresses high modes of spatial Laplacian [−]∆. Laplacian-Heaviside (LapH) smearing: project onto lowest modes,

$$
S_{\text{LapH}} = \sum_{n=1}^{N_{\text{LapH}}} u_n u_n^{\dagger}, \quad -\Delta u_n = \lambda_n u_n, \quad 0 < \lambda_1 < \lambda_2 < \cdots
$$

For constant smearing width, need $N_{\text{LapH}} \propto L^3$.

It is feasible to compute the timeslice-to-all or all-to-all propagator for LapH-smeared quarks. This requires the perambulator,

$$
\tau_{n',n}(t',t) \equiv \sum_{\vec{x},\vec{x}'} u_{n'}^{(t')\dagger}(\vec{x}') D^{-1}(\vec{x}',t';\vec{x},t) u_n^{(t)}(\vec{x}).
$$

Using perambulators to compute correlators forms the basis of distillation. Jeremy Green | DESY, Zeuthen | INT-18-70W | Page 11 The simplest baryon correlators can be constructed from perambulators together with mode triplets,

$$
T_{lmn}(t,\vec{p}) \equiv \sum_{\vec{x},a,b,c} e^{-i\vec{p}\cdot\vec{x}} \epsilon_{abc} u_{la}^{(t)}(\vec{x}) u_{mb}^{(t)}(\vec{x}) u_{nc}^{(t)}(\vec{x}).
$$

Contraction cost $\propto N_{\sf LapH}^4$.

Distillation and two baryons

For a correlator $\langle BB(t)BB^{\dagger}(0) \rangle$, Wick contractions fall into two classes:

straight

To compute these, first compute the partially-contracted source-sink blocks,

at a cost $\propto N_{\mathsf{Lapl}}^4$. Combining them to form correlators is inexpensive.

Effective energy, distillation

Exact SU(3): E_{eff} from a single operator in each flavour channel. Jeremy Green | DESY, Zeuthen | INT-18-70W | Page 14

Comparison: point-source and distillation

Jeremy Green | DESY, Zeuthen | INT-18-70W | Page 15

E1: singlet ${}^{1}S_{0}$ phase shift

Distillation point [000][∗] provides strongest constraint. $\Delta E = 19(11)$ MeV. Jeremy Green | DESY, Zeuthen | INT-18-70W | Page 16

Effective energy, distillation (variational)

Broken SU(3): E_{eff} from projected correlators using GEVP solution. Jeremy Green | DESY, Zeuthen | INT-18-70W | Page 17 New CLS ensembles: $N_f = 2 + 1$ $O(a)$ -improved Wilson fermions.

- \triangleright m_s varied simultaneously with m_{ud} to keep $m_u + m_d + m_s$ constant.
 \triangleright Multinle volumes available at same lattice parameters.
- Multiple volumes available at same lattice parameters.
- Initial study on two ensembles at $SU(3)$ -symmetric point, $m_{\pi} = m_K = m_n \approx 420$ MeV, $a = 0.086$ fm:
	- $U103: L = 2.06$ fm
	- \blacktriangleright H101: $L = 2.75$ fm
- ► Keep contraction costs down by using $P_+ \equiv \frac{1+y_4}{2}$ -projected quark fields: need only 2-component spinors.

Challenge: N_{LapH}^4 cost scaling for contractions. (Recall $N_{\text{\small{LapH}}} \propto L^3$ to obtain constant smearing width.)

Results shown are VERY PRELIMINARY.

U103: octet baryon effective mass

How small can we make N_{LapH} ?

U103: effective mass, shifted to plateau start

How small can we make N_{LapH} ? We will use 20 on U103 and 48 on H101.

Two-baryon interpolating operators

First, form single-baryon operators, e.g.

$$
O_p(t,\vec{p}) = \sum_{\vec{x}} e^{-i\vec{p}\cdot\vec{x}} \epsilon_{abc} \left[u_a(u_b^T C y_5 P_+ d_c) \right](t,\vec{x}),
$$

then construct spin-zero and spin-one two-baryon operators:

$$
O_{B_1B_2,0}(t, \vec{P}) = \sum_{\vec{p}} f(\vec{p}) O_{B_1}^T(t, \vec{p}) C_{\gamma_5} P_+ O_{B_2}(t, \vec{P} - \vec{p})
$$

$$
O_{B_1B_2,1}(t, \vec{P}) = \sum_{\vec{p}} g_i(\vec{p}) O_{B_1}^T(t, \vec{p}) C_{\gamma_i} P_+ O_{B_2}(t, \vec{P} - \vec{p})
$$

Simplest rest-frame operators:

$$
f^{(n)}(\vec{p}) = \begin{cases} 1 & p^2 = n\left(\frac{2\pi}{L}\right)^2 \\ 0 & \text{otherwise} \end{cases}
$$

In moving frames, can often construct spin-zero and spin-one operators with the same lattice quantum numbers.

Consider flavor-symmetric operators in frame $\vec{P} = \frac{2\pi}{L}(1,1,0)$, A_1 irrep.
Let $\vec{p}_0 = \frac{2\pi}{L}\hat{r}$, $\vec{p}_0 = \frac{2\pi}{L}\hat{u}$. Operators corresponding to lowest free levels: Let $\vec{p}_1 = \frac{2\pi}{L}\hat{x}, \vec{p}_2 = \frac{2\pi}{L}\hat{y}$. Operators corresponding to lowest free levels:

- **1.** Orbital angular momentum in $A_1: O_B^T(t, \vec{P})Cy_5P_+O_B(t, 0)$
- 2. Orbital angular momentum in $A_1: O_B^T(t, \vec{p}_1)C\gamma_5P_+O_B(t, \vec{p}_2)$
- **3.** Orbital angular momentum in B_1 : $O_B^T(t, \vec{p}_1)C\gamma_3P_+O_B(t, \vec{p}_2)$

H101: SU(3) singlet, rest frame, A_1^+ $\frac{1}{1}$ irrep

From a 3×3 Hermitian correlator matrix.

H101: SU(3) singlet, rest frame, A_1^+ $\frac{1}{1}$ irrep

From a 3×3 Hermitian correlator matrix.

H101: SU(3) singlet, rest frame, A_1^+ $\frac{1}{1}$ irrep

From a 3×3 Hermitian correlator matrix.

H101: SU(3) singlet, frame $\vec{P} = \frac{2\pi}{L}(1, 0, 0), A_1$ irrep

L

First two states couple mostly to ¹ S_0 operators; third state to ³ P_1 .

H101: SU(3) singlet, frame $\vec{P} = \frac{2\pi}{L}(1, 0, 0), A_1$ irrep

L

First two states couple mostly to ¹ S_0 operators; third state to ³ P_1 .

H101: SU(3) singlet, frame $\vec{P} = \frac{2\pi}{L}(1, 1, 0), A_1$ irrep

L

First two states couple mostly to ¹ S_0 operators; third state to ³ P_1 .

H101: SU(3) singlet, frame $\vec{P} = \frac{2\pi}{L}(1, 1, 0), A_1$ irrep

L

First two states couple mostly to ¹ S_0 operators; third state to ³ P_1 .

- \triangleright For two-octet-baryon SU(3) singlet sector, spin-zero and spin-one scattering channels do not couple.
- \triangleright Finite-volume quantization is diagonal in spin.

 \rightarrow Expect that states can be separated by spin, with phase shifts analyzed independently.

H101, 10, rest frame, T_1^+ i_1^+ irrep

Deuteron channel. Using two 3S_1 operators and one 3D_1 operator.

H101, 10, rest frame, T_1^+ i_1^+ irrep

Deuteron channel. Using two 3S_1 operators and one 3D_1 operator.

Biggest challenge for distillation: large volume, $N_{\mathsf{LapH}} \propto L^3$.

- ► Current approach: cost $\propto N_{\mathsf{LapH}}^4$. Might reach $N_{\text{Lapl}} \approx 100$, or $\dot{L} \approx 3.5$ fm with manageable contraction cost (several million core-hours). For $m_{\pi}L = 4$, this is $m_{\pi} \approx 225$ MeV.
- \triangleright Stochastic distillation could have better cost scaling, if precise results can be obtained when keeping N_{dil} independent of volume. Baryon-specific costs:
	- 1. Computing baryon sources and baryon sinks rather than mode triplets. Cost ∝ $N_{\text{dil}}^3 L^3$.

2. Contracting baryon sources and sinks. Cost in two-baryon sector $\propto N_{\text{dif}}^4$. The worst cost scaling could be the parts $\propto N_{\textsf{LapH}}L^3$ that also occur for meson correlators.

Challenge: three baryons

Same ingredients: mode triplets and perambulators.

Some contractions could have worse cost scaling, like N_{LapH}^6 .

Stochastic approach would need at least one noise source per quark line.

- \blacktriangleright Hexaguark interpolating operators don't seem very important for spectroscopy in two-baryon sector.
- \triangleright Distillation allows us to compute a Hermitian matrix of correlators using two-baryon interpolators.
- \triangleright Multiple energy levels can be isolated for each combination of flavour, moving frame, and little-group irrep.

Looking forward, on both $N_f = 2$ and $N_f = 2 + 1$ ensembles, plan to study the following:

- Simplest uncoupled channels: ${}^{1}S_{0}$, singlet (at SU(3) point) and $NNI = 1$.
- Deuteron channel, ${}^3S_1-{}^3D_1$ coupled.
- \blacktriangleright H dibaryon with broken SU(3).