Two-baryon spectroscopy and distillation

Jeremy Green

NIC, DESY, Zeuthen

Multi-Hadron Systems from Lattice QCD Institute for Nuclear Theory February 5–9, 2018

- 1. Previous study using smeared point sources
- 2. Distillation and two-baryon correlators
- 3. Previous study revisited with distillation
- 4. Preliminary results with $N_f = 3$
- 5. Challenges
- 6. Outlook

Goal: study the conjectured H dibaryon

- ▶ 0⁺ SU(3) singlet, quark content *uuddss*
- Initially using $N_f = 2$ ensembles from CLS and a quenched strange.

People:

- Hartmut Wittig
- current Mainz postdoc: Andrew Hanlon
- former Mainz postdocs: Anthony Francis, JG, Parikshit Junnarkar, Chuan Miao, Thomas Rae

Preliminary work presented at conferences: C. Miao *et al.*, PoS LATTICE2013 440 [1311.3933] JG *et al.*, PoS LATTICE2014 107 [1411.1643] P. Junnarkar *et al.*, PoS LATTICE2015 082, PoS CD15 079 [1511.01849] P. Junnarkar *et al.*, talk at Confinement XII (2016)

Final results from point sources are in preparation.

Interpolating operators

Use smeared quark fields. Consider two kinds of operators:

1. Hexaquark,

$$O(t,\vec{p}) = \sum_{\vec{x}} e^{-i\vec{p}\cdot\vec{x}} (qqqqqq)(t,\vec{x}).$$

- ▶ Looks like bag-model picture of *H* dibaryon.
- Under broken SU(3), two operators couple: singlet H^1 and 27-plet H^{27} .
- 2. Two-baryon,

$$O(t,\vec{p}) = \sum_{\vec{x},\vec{y}} e^{-i\vec{p}_1 \cdot \vec{x}} e^{-i\vec{p}_2 \cdot \vec{y}} (qqq)(t,\vec{x})(qqq)(t,\vec{y}), \quad \vec{p}_1 + \vec{p}_2 = \vec{p}.$$

- Looks more like noninteracting state.
- Three relevant flavour combinations ΛΛ, ΣΣ, and NΞ. Can rotate to SU(3) basis to get BB¹, BB⁸, BB²⁷.
- Many combinations of (\vec{p}_1, \vec{p}_2) possible.
- Can't evaluate at a point source.

Using a (smeared) point-source propagator, we can compute:

Can't compute $\langle BB(t)BB^{\dagger}(0)\rangle$ since it is not local on the source timeslice.

Variational method

Given N sink operators \tilde{O}_i and source operators O_j , compute the correlator matrix

$$C_{ij}(t) = \left\langle \tilde{O}_i(t) O_j^{\dagger}(0) \right\rangle.$$

It has the spectral decomposition

$$\mathbf{C}_{ij}(t) = \sum_{n} \tilde{Z}_i^{(n)} Z_j^{(n)*} e^{-E_n t}.$$

Solve the GEVP,

$$C(t + \Delta)v^{(n)}(t) = \lambda_n(t)C(t)v^{(n)}(t),$$

$$\tilde{v}^{(n)\dagger}(t)C(t + \Delta) = \lambda_n(t)\tilde{v}^{(n)\dagger}(t)C(t)$$

- ► If only *N* states contribute, then $v^{(n)}$ and $\tilde{v}^{(n)}$ are the dual vectors to $Z^{(n)}$ and $\tilde{Z}^{(n)}$, and $\lambda_n = e^{-E_n\Delta}$.
- If $\tilde{O}_i = O_i$, then C is Hermitian, $v = \tilde{v}$, and

$$E_n^{\text{eff}}(t) \equiv \frac{-1}{\Delta} \log \lambda_n = E_n + O(e^{-(E_{N+1} - E_n)t}).$$

Results with point sources

- ▶ Old CLS ensembles: $N_f = 2$, O(a)-improved Wilson fermions. Mainly show two of them with a = 0.0658 fm, L = 2.1 fm.
 - E1: m_{π} = 960 MeV, quenched $m_s = m_{ud}$.
 - E5: $m_{\pi} = 440$ MeV, quenched $m_s \approx m_s^{\text{phys}}$.
- Increase number of source operators using two different smearing widths.
- Apply GEVP to 2×2 or 4×4 square subsets of the C_{ij} at a fixed time to find v, ṽ. Then compute the effective energy of the projected correlators Λ_n(t) ≡ ṽ^{(n)†}C(t)v⁽ⁿ⁾:

$$E_n^{\text{eff}}(t) \equiv \frac{1}{\Delta} \log \frac{\Lambda_n(t)}{\Lambda_n(t+\Delta)}.$$

Effective energy, SU(3) singlet

Ground state from 2 × 2 GEVP. Fixed $\{O_i\}$, varying $\{\tilde{O}_i\}$.

Effective energies, broken SU(3)

For broken SU(3), find two low-lying levels. One couples mostly to singlet operators, the other mostly to 27-plet.

- > Two-baryon operators seem more relevant than hexaquark operators.
- It is messier to analyze non-Hermitian correlator matrices.

Therefore we want a Hermitian matrix of correlators with two-baryon operators at source and sink. One method for efficiently computing this: distillation

Distillation

We construct interpolating operators using smeared quark fields $\tilde{q}(\vec{x}) = S(\vec{x}, \vec{y})q(\vec{y})$. Common Gaussian-like smearing:

 $S = S_{\text{Wuppertal}} \approx e^{\sigma \Delta}.$

Suppresses high modes of spatial Laplacian $-\Delta$. Laplacian-Heaviside (LapH) smearing: project onto lowest modes,

$$S_{\text{LapH}} = \sum_{n=1}^{N_{\text{LapH}}} u_n u_n^{\dagger}, \quad -\Delta u_n = \lambda_n u_n, \quad 0 < \lambda_1 < \lambda_2 < \cdots$$

For constant smearing width, need $N_{\text{LapH}} \propto L^3$.

It is feasible to compute the timeslice-to-all or all-to-all propagator for LapH-smeared quarks. This requires the perambulator,

$$\tau_{n',n}(t',t) \equiv \sum_{\vec{x},\vec{x}'} u_{n'}^{(t')\dagger}(\vec{x}') D^{-1}(\vec{x}',t';\vec{x},t) u_n^{(t)}(\vec{x}).$$

Using perambulators to compute correlators forms the basis of *distillation*. Jeremy Green | DESY, Zeuthen | INT-18-70W | Page 11 The simplest baryon correlators can be constructed from perambulators together with mode triplets,

$$T_{lmn}(t,\vec{p}) \equiv \sum_{\vec{x},a,b,c} e^{-i\vec{p}\cdot\vec{x}} \epsilon_{abc} u_{la}^{(t)}(\vec{x}) u_{mb}^{(t)}(\vec{x}) u_{nc}^{(t)}(\vec{x}).$$

Contraction cost $\propto N_{\text{LapH}}^4$.

Distillation and two baryons

For a correlator $\langle BB(t)BB^{\dagger}(0)\rangle$, Wick contractions fall into two classes:

straight

exchange

To compute these, first compute the partially-contracted source-sink blocks,

at a cost $\propto N_{\rm LapH}^4.$ Combining them to form correlators is in expensive.

Effective energy, distillation

Exact SU(3): E_{eff} from a single operator in each flavour channel.

Comparison: point-source and distillation

Jeremy Green | DESY, Zeuthen | INT-18-70W | Page 15

E1: singlet ¹S₀ phase shift

Distillation point [000]^{*} provides strongest constraint. $\Delta E = 19(11)$ MeV. Jeremy Green | DESY, Zeuthen | INT-18-70W | Page 16

Effective energy, distillation (variational)

Broken SU(3): *E*_{eff} from projected correlators using GEVP solution. Jeremy Green | DESY, Zeuthen | INT-18-70W | Page 17

Ongoing project with distillation

New CLS ensembles: $N_f = 2 + 1 O(a)$ -improved Wilson fermions.

- ▶ m_s varied simultaneously with m_{ud} to keep $m_u + m_d + m_s$ constant.
- Multiple volumes available at same lattice parameters.
- ► Initial study on two ensembles at SU(3)-symmetric point, $m_{\pi} = m_K = m_n \approx 420$ MeV, a = 0.086 fm:
 - ▶ U103: *L* = 2.06 fm
 - ▶ H101: *L* = 2.75 fm
- ► Keep contraction costs down by using $P_+ \equiv \frac{1+\gamma_4}{2}$ -projected quark fields: need only 2-component spinors.

Challenge: N_{LapH}^4 cost scaling for contractions.

(Recall $N_{LapH} \propto L^3$ to obtain constant smearing width.)

Results shown are VERY PRELIMINARY.

U103: octet baryon effective mass

How small can we make N_{LapH} ?

U103: effective mass, shifted to plateau start

How small can we make N_{LapH} ? We will use 20 on U103 and 48 on H101.

Two-baryon interpolating operators

First, form single-baryon operators, e.g.

$$O_p(t,\vec{p}) = \sum_{\vec{x}} e^{-i\vec{p}\cdot\vec{x}} \epsilon_{abc} \left[u_a(u_b^T C\gamma_5 P_+ d_c) \right] (t,\vec{x}),$$

then construct spin-zero and spin-one two-baryon operators:

$$O_{B_1B_2,0}(t,\vec{P}) = \sum_{\vec{p}} f(\vec{p})O_{B_1}^T(t,\vec{p})C\gamma_5 P_+ O_{B_2}(t,\vec{P}-\vec{p})$$
$$O_{B_1B_2,1}(t,\vec{P}) = \sum_{\vec{p}} g_i(\vec{p})O_{B_1}^T(t,\vec{p})C\gamma_i P_+ O_{B_2}(t,\vec{P}-\vec{p})$$

Simplest rest-frame operators:

$$f^{(n)}(\vec{p}) = \begin{cases} 1 & p^2 = n \left(\frac{2\pi}{L}\right)^2 \\ 0 & \text{otherwise} \end{cases}$$

In moving frames, can often construct spin-zero and spin-one operators with the same lattice quantum numbers.

Consider flavor-symmetric operators in frame $\vec{P} = \frac{2\pi}{L}(1, 1, 0)$, A_1 irrep. Let $\vec{p}_1 = \frac{2\pi}{L}\hat{x}$, $\vec{p}_2 = \frac{2\pi}{L}\hat{y}$. Operators corresponding to lowest free levels:

- **1.** Orbital angular momentum in $A_1: O_B^T(t, \vec{P})C\gamma_5 P_+ O_B(t, 0)$
- **2**. Orbital angular momentum in $A_1: O_B^T(t, \vec{p}_1)C\gamma_5 P_+ O_B(t, \vec{p}_2)$
- **3.** Orbital angular momentum in $B_1: O_B^T(t, \vec{p}_1)C\gamma_3 P_+O_B(t, \vec{p}_2)$

H101: SU(3) singlet, rest frame, A_1^+ irrep

From a 3×3 Hermitian correlator matrix.

H101: SU(3) singlet, rest frame, A_1^+ irrep

From a 3×3 Hermitian correlator matrix.

H101: SU(3) singlet, rest frame, A_1^+ irrep

From a 3×3 Hermitian correlator matrix.

H101: SU(3) singlet, frame $\vec{P} = \frac{2\pi}{L}(1, 0, 0), A_1$ irrep

First two states couple mostly to ${}^{1}S_{0}$ operators; third state to ${}^{3}P_{1}$.

H101: SU(3) singlet, frame $\vec{P} = \frac{2\pi}{L}(1, 0, 0), A_1$ irrep

First two states couple mostly to ${}^{1}S_{0}$ operators; third state to ${}^{3}P_{1}$.

H101: SU(3) singlet, frame $\vec{P} = \frac{2\pi}{L}(1, 1, 0), A_1$ irrep

First two states couple mostly to ${}^{1}S_{0}$ operators; third state to ${}^{3}P_{1}$.

H101: SU(3) singlet, frame $\vec{P} = \frac{2\pi}{L}(1, 1, 0), A_1$ irrep

First two states couple mostly to ${}^{1}S_{0}$ operators; third state to ${}^{3}P_{1}$.

- For two-octet-baryon SU(3) singlet sector, spin-zero and spin-one scattering channels do not couple.
- Finite-volume quantization is diagonal in spin.
- \rightarrow Expect that states can be separated by spin, with phase shifts analyzed independently.

H101, $\overline{10}$, rest frame, T_1^+ irrep

Deuteron channel. Using two ${}^{3}S_{1}$ operators and one ${}^{3}D_{1}$ operator.

H101, $\overline{10}$, rest frame, T_1^+ irrep

Deuteron channel. Using two ${}^{3}S_{1}$ operators and one ${}^{3}D_{1}$ operator.

Biggest challenge for distillation: large volume, $N_{\text{LapH}} \propto L^3$.

- Current approach: cost ∝ N⁴_{LapH}. Might reach N_{LapH} ≈ 100, or L ≈ 3.5 fm with manageable contraction cost (several million core-hours). For m_πL = 4, this is m_π ≈ 225 MeV.
- Stochastic distillation could have better cost scaling, if precise results can be obtained when keeping N_{dil} independent of volume. Baryon-specific costs:
 - 1. Computing baryon sources and baryon sinks rather than mode triplets. Cost $\propto N_{dil}^3 L^3$.
 - 2. Contracting baryon sources and sinks. Cost in two-baryon sector $\propto N_{dil}^4$.

The worst cost scaling could be the parts $\propto N_{LapH}L^3$ that also occur for meson correlators.

Challenge: three baryons

Same ingredients: mode triplets and perambulators.

Some contractions could have worse cost scaling, like N_{LapH}^6 .

Stochastic approach would need at least one noise source per quark line.

- Hexaquark interpolating operators don't seem very important for spectroscopy in two-baryon sector.
- Distillation allows us to compute a Hermitian matrix of correlators using two-baryon interpolators.
- Multiple energy levels can be isolated for each combination of flavour, moving frame, and little-group irrep.

Looking forward, on both $N_f = 2$ and $N_f = 2 + 1$ ensembles, plan to study the following:

- Simplest uncoupled channels: ¹S₀, singlet (at SU(3) point) and NN I = 1.
- Deuteron channel, ${}^{3}S_{1} {}^{3}D_{1}$ coupled.
- H dibaryon with broken SU(3).