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Nuclear forces at physical and unphysical 
pion masses

Part II: Low-energy theorems for NN scattering

— physical Mπ

— unphysical Mπ



 From QCD to nuclei

QCD

effective chiral Lagrangian 

nuclear forces and currents

nuclear structure and dynamics

symmetries (especially the chiral symmetry);
lost of information (LECs)

integrate out                          (but retain               ):
Chiral Perturbation Theory

ab initio many-body methods:
lattice, FY, NCSM,…
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Weinberg, van Kolck, Kaiser, EGM, …  
Nuclear forces

Park et al, Bochum-Bonn, JLab-Pisa
Nuclear currents

Auxilliary quantities (not observable),
must be consistent (unitary ambiguity)

 Modern approach to nuclear physics
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Effective Lagrangian:

GB dynamics
Weinberg, Gasser, Leutwyler, …  

πN dynamics
Bernard-Kaiser-Meißner et al. Chiral Perturbation Theory

Q = momenta of particles or Mπ  ~ 140 MeV
breakdown scale Λb



 Chiral expansion of the nuclear forcesNuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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Weinberg ’90

Ordonez, van Kolck ’92

Ordonez, van Kolck ’92

Kaiser ’00 - ‘02

van Kolck ’94;  EE et al. ’02

Bernard, EE, Krebs, Meißner,’08, ’11 EE ’06

Entem, Kaiser, Machleidt, Nosyk ’15
EE, Krebs, Meißner ’15

Girlanda, Kievsky, Viviani ’11
Krebs, Gasparyan, EE ’12,’13

(short-range loop contrib. still missing)

still have to be worked out

[parameter-free] [parameter-free]

A similar program is being pursued for currents Kölling, EE, Krebs, Meißner ’09,’11; Kölling, EE, Phillips ’12; Krebs, EE, Meißner ’17,…
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The long and short of nuclear forces



 The long and short of nuclear forces

Short-range interactions have to be tuned to experimental data. In the isospin 
limit, one has according to NDA:

LO [Q0]:
NLO [Q2]:

N3LO [Q4]:

2 operators (S-waves)
+ 7 operators (S-, P-waves and ε1)

+ 12 operators (S-, P-, D-waves and ε1, ε2) 
N4LO [Q5]: no new terms

N2LO [Q3]: no new terms

Nuclear χEFT in the Precision Era Evgeny Epelbaum

πN scattering 2π-exchange 
NN force

long- and intermediate-range parts of the 3NF

Figure 2: The long-range part of the nuclear force is completely predicted by the chiral symmetry
of QCD and experimental information on the pion-nucleon system.

part of the interaction and thus maintains the analytic structure of the amplitude in the low-energy
domain. This feature is in contrast with the non-local momentum-space regulator employed in the
first-generation NN potentials of Refs. [47, 48] of the type

V (p⃗, p⃗ ′)→V reg(p⃗, p⃗ ′) =V (p⃗, p⃗ ′)exp
(

−
p2n+ p′2n

Λ2n

)

, n= 2,3 , (2.7)

where p⃗, p⃗ ′ are the initial and final momenta of the nucleons in the center of mass system (CMS),
which distorts the long-range part of the interaction. Another advantage of the regulator in Eq. (2.5)
is that it cuts off precisely the undesired short-range components of the pion exchange contributions
which cannot be meaningfully predicted in chiral EFT instead of their large-momentum parts as
does the non-local regulator in Eq. (2.7). This makes the additional spectral-function regularization
(SFR) [75] of the two-pion exchange components, which was used e.g. in Refs. [48, 76] to tame
the unphysically strong attraction at short distances at N2LO [41], obsolete. This is a particularly
welcome feature in view of the ongoing and upcoming 3NF studies, in which the implementation
of the SFR would be rather non-trivial. The insensitivity of the calculated NN observables to the
value of the exponent in Eq. (2.5) is demonstrated in [18]. For contact interactions, we used in
Refs. [18, 19] a non-local Gaussian regulator in momentum space with the cutoff set to Λ= 2/R.

2.3 Determination of the LECs

I am now in the position to specify the employed values of the various LECs and begin with
the long-range part of the potential due to exchange of pion(s). Here, the framework of chiral
EFT shows its full power by allowing one to predict the long-range part of the nuclear force in a
parameter-free way using the available experimental information on the pion-nucleon system and
exploiting the constraints due to the chiral symmetry of QCD as visualized schematically in Fig. 2.
At orders N2LO, N3LO and N4LO, one needs to specify the values of the order-Q2, order-Q3 and
order-Q4 πN LECs ci, di and ei, respectively. At N2LO and N3LO, we used in [18] the values
of c1 = −0.81, c2 = 3.28, c3 = −4.69, c4 = 3.40, d̄1 + d̄2 = 3.06, d̄3 = −3.27, d̄5 = 0.45 and
d̄14 − d̄15 = −5.65 from the order-Q3 fits to πN data in the physical region [77] and inside the
Mandelstam triangle [78]. Further, the LEC d18 is adjusted to reproduce the observed value of the
Goldberger-Treiman discrepancy. Here and in the following, the values of the LECs are given in
units of GeV−n. The bars over the LECs indicate that I am using the convention of Ref. [77] by
setting the dimensional regularization scale equal to the pion mass. At N4LO, we employ the values
from our order-Q4 fit to Karlsruhe-Helsinki partial-wave analysis of πN scattering [55], namely:
c1 =−0.75, c2 = 3.49, c3 =−4.77, c4 = 3.34, d̄1+ d̄2 = 6.21, d̄3 =−6.83, d̄5 = 0.78, d̄14− d̄15 =
−12.02, ē14 = 1.52 and ē17 =−0.37. These values are in a reasonable agreement with the ones of

8

The long-range part of nuclear forces and currents is completely determined by  
the chiral symmetry of QCD + experimental information on πN scattering

predicted in a parameter-free way



 Determination of πN LECs

Matching ChPT to πN Roy-Steiner equations

πN scattering, 
physical region

χ expansion of the πN amplitude expected to 
converge best within the Mandelstam triangle

Hoferichter, Ruiz de Elvira, Kubis, Meißner, PRL 115 (2015) 092301

Closer to the kinematics relevant for nuclear 
forces…

NN potential

Subthreshold coefficients (from RS analysis) 
provide a natural matching point to ChPT

subthreshold 
expansion
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FIG. 3. (Color online) Results of the fit for πN s-, p-, and d -wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid
curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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FIG. 3. (Color online) Results of the fit for πN s-, p-, and d -wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid
curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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 NN data analysis

Since 1950-es, about 3000 proton-proton + 5000 neutron-proton scattering data below 
350 MeV have been measured.

However, certain data are mutually incompatible within errors and have to be rejected. 
2013 Granada database [Navarro-Perez et al., PRC 88 (2013) 064002], rejection rate: 31% np, 11% pp:
            2158 proton-proton + 2697 neutron-proton data below Elab = 300 MeV

7

Database

● Includes scattering data from 50ies up to 
2013

● uses ”3σ-criterion” to reject non-normal-
distributed data

● rejection rate 0-300 MeV: np: 31%, pp: 11%
np

pp

Use self-consistent 2013 Granada database 
[Phys. Rev. C 88.064002]

Comparison between theory and 
experiment via standard χ2 approach:

● Z (inverse relative norm) is chosen to 
minimze χ2

j

7

Database

● Includes scattering data from 50ies up to 
2013

● uses ”3σ-criterion” to reject non-normal-
distributed data

● rejection rate 0-300 MeV: np: 31%, pp: 11%
np

pp

Use self-consistent 2013 Granada database 
[Phys. Rev. C 88.064002]

Comparison between theory and 
experiment via standard χ2 approach:

● Z (inverse relative norm) is chosen to 
minimze χ2

j

7

Database

● Includes scattering data from 50ies up to 
2013

● uses ”3σ-criterion” to reject non-normal-
distributed data

● rejection rate 0-300 MeV: np: 31%, pp: 11%
np

pp

Use self-consistent 2013 Granada database 
[Phys. Rev. C 88.064002]

Comparison between theory and 
experiment via standard χ2 approach:

● Z (inverse relative norm) is chosen to 
minimze χ2

j

To fix NN contact interactions, use scattering data together with Bd = 2.224575(9) MeV 
and bnp = 3.7405(9) fm. 

P. Reinert, H. Krebs, EE, arXiv:1711.08821[nucl-th]
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FIG. 16: (Color online) Neutron-proton S-, P-, D- and F-wave phase shifts and the mixing angles ✏1, ✏2 and ✏2 as obtained
at N4LO+ using the cuto↵ ⇤ = 450 MeV (red solid lines) in comparison with the Nijmegen [20] (solid dots) the Granada [92]
(blue open triangles) and Gross-Stadler [121] (green open squares) PWA. Light shaded bands show the estimated truncation
error as explained in appendix D. The shown uncertainties of the Nijmegen PWA correspond to systematic errors estimated
from the Nijm I, II and Reid93 potentials [110] as explained in Ref. [6].

and 0.15%, respectively.13 In both cases, the observed ⇤-dependence is smaller than the deviations from the very
precisely known experimental/empirical values listed in Table VIII. These deviations amount to ⇠ 0.015 fm2 and
⇠ 0.009 fm for Q and rd, respectively, and are comparable with the truncation errors for these quantities at N2LO,

namely �Q(3) = ±(0.005 . . . 0.011) fm2 (depending on the cuto↵) and �r(3)
d

= ±0.005 fm, which estimate the expected
size of N3LO contributions to these observables. This is fully in line with the fact that our calculations do not take
into account the relativistic corrections and contributions to the exchange charge operator at N3LO, see Ref. [33, 34]
for explicit expressions. Our results further indicate that starting from N3LO, the theoretical uncertainty for both
quantities is dominated by the one of the ⇡N LECs similarly to other low-energy observables considered in this and
previous sections. For both Q and rd, employing the ⇡N LECs from set 2 tends to increase the discrepancy with the
empirical numbers.

13
The smaller cuto↵ dependence of the deuteron radius reflects the long-range nature of this observable as opposed to that of Q.

— N4LO+ yields currently the best description of np+pp data below Elab = 300 MeV 
— About 40% less parameters (LECs) than in high-precision potentials
— Clear evidence of the (parameter-free) chiral 2π exchange 

 NN data analysis
P. Reinert, H. Krebs, EE, arXiv:1711.08821[nucl-th]



Careful error analysis: truncation error [EE, Krebs, Meißner EPJ A51 (15), PRL 115 (15)], statistical uncertainty 
(NN LECs), uncertainty due to πN LECs, choice of the energy in the fits.

Exp:
Rodning, Knutson ’90

statistical error variation of Emax

truncation error πN LECs

Example: deuteron asymptotic normalizations (relevant for nuclear astrophysics)
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neutron-proton
0–100 0.6 1.7 5.2 0.8 0.7 0.6 0.7 1.4
0–200 0.6 2.2 5.3 0.8 0.7 0.6 0.8 1.8
0–300 0.6 3.3 6.8 2.1 1.5 1.8 4.0 10.7

proton-proton
0–100 0.5 1.5? 6.7? 1.8 0.8 0.5 1.2 4.6
0–200 1.3 2.9? 11.7? 2.1 0.7 0.6 2.2 8.2
0–300 1.3 5.9? 30.0? 12.0 3.2 7.0 24.5 66.8

?The 1S0 partial wave has not been taken into account.
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?The 1S0 partial wave has not been taken into account.
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s-state

d-state
Borbely et al. ’85

Nijmegen PWA [errors are „educated guesses“]  Stoks et al. ’95

Granada PWA [errors purely statistical]  Navarro Perez et al. ’13
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 Error analysis
Reinert, Krebs, EE, arXiv:1711.08821[nucl-th]

Our determination:



 Three-nucleon forces

Kalantar-Nayestanaki, EE, Messchendorp, Nogga, Rev. Mod. Phys. 75 (12) 016301
But the real challenge is to understand the spin structure of the 3NF…

N2LO: tree-level graphs, 2 new LECs  

N3LO: leading 1 loop, parameter-free  

N4LO: full 1 loop, almost completely worked out, several new LECs  

2

1/m

(a) (b) (c) (d) (e) (f) (g)

FIG. 1. (color online) Di↵erent topologies that contribute to the chiral 3NF up to N3LO (and N4LO). Nucleons and pions
are represented by solid and dashed lines, respectively. The shaded vertices denote the amplitudes of the corresponding
interaction. Specifically, the individual diagrams are: (a) 2⇡ exchange, (b) 1⇡-contact, (c) pure contact, (d) 2⇡-1⇡ exchange,
(e) ring contributions, (f) 2⇡-contact and (g) relativistic corrections. See main text for details.

form for few- and many-body frameworks represents a
highly nontrivial task [37–39]. Due to the huge amount
of computational resources needed for this decomposi-
tion, matrix elements have been so far available only in
a limited model space [16]. As a consequence, consistent
N3LO three-body scattering calculations were limited to
low energies and no studies of heavier nuclei were pos-
sible. In this paper we present a novel framework that
allows one to decompose 3N interactions in a plane-wave
partial wave basis in a computationally much more ef-
ficient way than the framework of Refs. [38, 39]. This
new method makes explicit use of the fact that all (un-
regularized) contributions to chiral 3NFs are either local,
i.e. they depend only on momentum transfers, or they
contain only polynomial non-local terms.

In Section II we derive the new framework for decom-
posing local 3NFs e�ciently in a momentum-space par-
tial wave basis. In Section III we apply the calculated
matrix elements of chiral 3NFs up to N3LO to nuclear
matter and 3H, discuss the partial wave convergence and
investigate the importance of the individual topologies at
di↵erent orders in the chiral expansion. In Section IV we
summarize and given an outlook of future applications.

II. PARTIAL WAVE DECOMPOSITION OF
LOCAL THREE-NUCLEON FORCES

A general translationally invariant 3NF can be ex-
pressed as a function of the Jacobi momenta p = k1�k2

2

and q = 2
3

⇥
k3 � 1

2 (k1 + k2)
⇤
, where ki denote the single

nucleon momenta (in the following equations we will first
suppress spin and isospin degrees of freedom):

V123 = V123(p,q,p
0
,q0). (1)

Here and in the following p and q (p0 and q0) denote
the Jacobi momenta of the initial (final) state. For local
interactions, however, the momentum dependence fur-
ther simplifies as such forces only depend on momentum
transfers, i.e. on di↵erences of Jacobi momenta:

V
loc
123 = V

loc
123(p

0 � p,q0 � q) ⌘ V
loc
123(p̃, q̃). (2)

Note that this statement refers to unregularized forces.
Below we will apply non-local regulators to the partial-
wave decomposed matrix elements. The regularization
will be discussed in more detail in Section III.

Generally, the decomposition of 3NFs in plane-wave
partial waves involves the evaluation of projection inte-
grals of the form

F
mLmlmL0ml0
LlL0l0 (p, q, p0, q0) =

Z
dp̂0

dq̂0
dp̂dq̂

⇥Y
⇤
L0mL0 (p̂

0)Y ⇤
l0ml0

(q̂0)YLmL(p̂)Ylml(q̂)V
loc
123(p̃, q̃) (3)

for fixed values of p = |p|, q = |q|, p0 = |p0|, q0 = |q0|
and the angular momentum quantum numbers. By using
symmetries, it is possible to reduce the dimensionality of
the angular integrals from 8 to 5. Traditional methods
are based on a direct discretization and numerical evalu-
ation of these angular integrals [38, 39]. Due to the large
number of external quantum numbers and momentum
mesh points such algorithms require very large computa-
tional resources for calculating all matrix elements nec-
essary for many-body studies. As a result, the number
of matrix elements of chiral N3LO interactions were so
far insu�cient for studies of nuclei and matter. However,
it is possible to evaluate the basic function F defined in
Eq. (3) in a much more e�cient way by explicitly mak-
ing use of the local nature of the 3NFs. Indeed, using
rotation invariance of the potential V loc

123 we can write it
as a function of three independent variables:

V
loc
123(p̃, q̃) = V

loc
123(p̃, q̃, cos ✓p̃q̃), (4)

where

cos ✓p̃q̃ =
p̃ · q̃
p̃q̃

, p̃ = |p̃|, q̃ = |q̃|. (5)

This already shows that the original eight dimensional
integral contains actually only three non-trivial integra-
tions. The other five integrations, after employing some
integral transformations, which are described in the ap-
pendix, can be performed analytically. The final result

van Kolck ’94; EE et al ’02

Ishikawa, Robilotta ’08; Bernard, EE, Krebs, Meißner ’08, ’11 

Girlanda, Kievski, Viviani ’11; Krebs, Gasparyan, EE ’12,’13;  EE, Gasparyan, Krebs, Schat ’14 

Low Energy Nuclear Physics International Collaboration (LENPIC), work in progress
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Figure 7: Chiral expansion of the np total cross section at different energies based on R = 0.9 fm
in comparison with experimental data of Ref. [90]. The horizontal band shows the result of the
NPWA.

Table 2: Deuteron binding energy Bd (in MeV), asymptotic S state normalization AS (in fm−1/2),
asymptotic D/S state ratio η , radius rd (in fm), quadrupole moment Q (in fm2) and the D-state
probability PD (in %) based on the cutoff R= 0.9 fm. Notice that rd and Q are calculated without
including exchange current contributions and relativistic corrections. References to experimental
data/empirical values can be found in Ref. [18].

LO NLO N2LO N3LO N4LO Empirical

Bd 2.0235 2.1987 2.2311 2.2246⋆ 2.2246⋆ 2.224575(9)
AS 0.8333 0.8772 0.8865 0.8845 0.8844 0.8846(9)
η 0.0212 0.0256 0.0256 0.0255 0.0255 0.0256(4)
rd 1.990 1.968 1.966 1.972 1.972 1.97535(85)
Q 0.230 0.273 0.270 0.271 0.271 0.2859(3)
PD 2.54 4.73 4.50 4.19 4.29
⋆The deuteron binding energy has been taken as input in the fit.

NPWA and confirm a good convergence of the chiral expansion. More results for NN observables
can be found in Refs. [18, 19].

As already advertised, the novel approach to uncertainty quantification is not restricted to a
particular choice of the regulator. Carrying out the error analysis for calculations based on different
choices of R thus provides a useful consistency check of the method. In Fig. 9, we show the results
for the total cross section at all orders starting from NLO and for all considered cutoff choices.
Within the quoted errors, the predictions based on different values of R agree with each other and
the NPWA for all orders in the chiral expansion. The accuracy of the predicted results for the cross
section shows the same dependence on the cutoff as the quality of the fits discussed in section 2.4.

In Table 2, we list our results for the deuteron properties. At the considered accuracy level,
the chiral expansion is nearly converged already at N3LO except for PD which is not an observable
quantity.8 The predicted values for AS and η are in excellent agreement with the empirical numbers.

8PD = 5%±1% has been used as an additional “data” point in the fits at N3LO and N4LO in order to stabilize the
results, see Ref. [18] for more detail.
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Fugita-Miyazawa, 
Tucson-Melbourne, 
Brasil, Urbana IX, Illinois, ... General structure of a 3NF 

Why is it so difficult to model the 3NF as compared to NN potentials?
More scarce Nd data base compared to np and pp data bases
Solving the Faddeev equation for 3N more involved than solving the LS equation for NN
General structure of the 3NF is much more involved

2

Generators G in momentum space Generators G̃ in coordinate space

G1 = 1 G̃1 = 1

G2 = τ 1 · τ 3 G̃2 = τ 1 · τ 3

G3 = σ⃗1 · σ⃗3 G̃3 = σ⃗1 · σ⃗3

G4 = τ 1 · τ 3σ⃗1 · σ⃗3 G̃4 = τ 1 · τ 3 σ⃗1 · σ⃗3

G5 = τ 2 · τ 3σ⃗1 · σ⃗2 G̃5 = τ 2 · τ 3 σ⃗1 · σ⃗2

G6 = τ 1 · (τ 2 × τ 3)σ⃗1 · (σ⃗2 × σ⃗3) G̃6 = τ 1 · (τ 2 × τ 3) σ⃗1 · (σ⃗2 × σ⃗3)

G7 = τ 1 · (τ 2 × τ 3)σ⃗2 · (q⃗1 × q⃗3) G̃7 = τ 1 · (τ 2 × τ 3) σ⃗2 · (r̂12 × r̂23)

G8 = q⃗1 · σ⃗1q⃗1 · σ⃗3 G̃8 = r̂23 · σ⃗1 r̂23 · σ⃗3

G9 = q⃗1 · σ⃗3q⃗3 · σ⃗1 G̃9 = r̂23 · σ⃗3 r̂12 · σ⃗1

G10 = q⃗1 · σ⃗1q⃗3 · σ⃗3 G̃10 = r̂23 · σ⃗1 r̂12 · σ⃗3

G11 = τ 2 · τ 3q⃗1 · σ⃗1q⃗1 · σ⃗2 G̃11 = τ 2 · τ 3 r̂23 · σ⃗1 r̂23 · σ⃗2

G12 = τ 2 · τ 3q⃗1 · σ⃗1q⃗3 · σ⃗2 G̃12 = τ 2 · τ 3 r̂23 · σ⃗1 r̂12 · σ⃗2

G13 = τ 2 · τ 3q⃗3 · σ⃗1q⃗1 · σ⃗2 G̃13 = τ 2 · τ 3 r̂12 · σ⃗1 r̂23 · σ⃗2

G14 = τ 2 · τ 3q⃗3 · σ⃗1q⃗3 · σ⃗2 G̃14 = τ 2 · τ 3 r̂12 · σ⃗1 r̂12 · σ⃗2

G15 = τ 1 · τ 3q⃗2 · σ⃗1q⃗2 · σ⃗3 G̃15 = τ 1 · τ 3 r̂13 · σ⃗1 r̂13 · σ⃗3

G16 = τ 2 · τ 3q⃗3 · σ⃗2q⃗3 · σ⃗3 G̃16 = τ 2 · τ 3 r̂12 · σ⃗2 r̂12 · σ⃗3

G17 = τ 1 · τ 3q⃗1 · σ⃗1q⃗3 · σ⃗3 G̃17 = τ 1 · τ 3 r̂23 · σ⃗1 r̂12 · σ⃗3

G18 = τ 1 · (τ 2 × τ 3)σ⃗1 · σ⃗3σ⃗2 · (q⃗1 × q⃗3) G̃18 = τ 1 · (τ 2 × τ 3) σ⃗1 · σ⃗3 σ⃗2 · (r̂12 × r̂23)

G19 = τ 1 · (τ 2 × τ 3)σ⃗3 · q⃗1q⃗1 · (σ⃗1 × σ⃗2) G̃19 = τ 1 · (τ 2 × τ 3) σ⃗3 · r̂23 r̂23 · (σ⃗1 × σ⃗2)

G20 = τ 1 · (τ 2 × τ 3)σ⃗1 · q⃗1σ⃗3 · q⃗3σ⃗2 · (q⃗1 × q⃗3) G̃20 = τ 1 · (τ 2 × τ 3) σ⃗1 · r̂23 σ⃗3 · r̂12 σ⃗2 · (r̂12 × r̂23)

TABLE I: The set of 20 generating operators Gi which generate 80 independent operators Oi of a local three-nucleon force.
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We adopt now a new basis with 80 operators which can be generated by 20 operators given in momentum and
coordinate space in Table I. We also give relations between old and new structure functions Fi: In order to distinguish
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Most general structure of a local, isospin-symmetric 3NF
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 Intermediate summary

— The 2N sector is in a very good shape

— Current frontiers: 3N forces, external probes (e.m., weak), ab-initio 
     calculations of (heavier) nuclei and reactions, systematic underbinding 
     and too small radii for heavier nuclei…

— Still under debate: power counting for short-range operators…

Nuclear chiral EFT at physical Mπ

— Neutron-neutron scattering (especially the scattering length!)

— Hyperon-nucleon and hyperon-hyperon scattering 

Input from lattice QCD hardly needed for:

— On the other hand, no need for np, pp (and probably also for Nd) „data“…



 
Nuclear EFT at unphysical pion mass
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FIG. 4. The deuteron binding energy as a function of the pion mass (from the physical value to
the chiral limit). We do not show values below mπ = 60 MeV since the deuteron can be both bound
and unbound. The shaded region corresponds to η = 1/5, −2.61 GeV−2 < d16 < −0.17 GeV−2,

and −1.54 GeV−2 < d18 < −0.51 GeV−2.

FIG. 5. The scattering length in the 3S1-channel as a function of the pion mass for
d16 = +1 GeV−2, η = 1/3 and d18 = −0.51 GeV−2.
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Figure 1: Deuteron binding energy as a function of the pion mass. The shaded
areas correspond to the allowed values. The light shaded band refers to the variation
of D̄3S1

using η3S1
= 1/4.3 and d̄16 = −1.23 GeV−2, d̄18 = −0.97 GeV−2. The dark

shaded band gives the uncertainty if, in addition to variation of D̄3S1
, the LEC d̄16

is varied in the range from d̄16 = −0.17 GeV−2 to d̄16 = −2.61 GeV−2. The heavy
dot shows the binding energy for the physical value of the pion mass.

where αI and βI are the known constants and Λ refers to the renormalization scale.#7 This
indicates that the Mπ–dependence of the leading TPE is as important as the Mπ–dependence
of the short–range terms in eq. (4). It is, therefore, not clear, why the authors of [3], [5] decided
to neglect the explicit Mπ–dependence of the TPE as well as the second term in eq. (4) and to
keep only the first term in that equation.

6) The authors of [5] claim to be able to reproduce our results using the same input parameters. As
we just showed with respect to the discussion of their Fig. 4, we are not able to reproduce theirs.
In particular, we obtain for the deuteron binding energy in the chiral limit: BCL

D = 9.6+4.4
−3.2

+5.7
−2.4

MeV, where the uncertainties for D̄3S1
(the first error) and d̄16 (the second error) are taken

from [5] or are even slightly larger, i.e.: η3S1
= 1/4.3; −2.61GeV−2 < d̄16 < −0.17GeV−2.

As already pointed out, we do not consider a variation in d̄18 as relevant here, and, therefore,
have not plotted the corresponding bands in Fig. 1. For the sake of completeness, we however
calculated the resulting additional uncertainty in the chiral limit value of the deuteron binding
energy. Note that the LEC d̄18 does not contribute to the OPE in the chiral limit (where the
Goldberger-Treiman relation is exact) and thus changing d̄18 only affects BCL

D indirectly, due
to corresponding small changes in the LECs related to contact interactions, as explained in
[1]. Variation of d̄18 in the range −1.54GeV−2 < d̄18 < −0.51GeV−2 in addition to variation of

#7Similar terms also arise from renormalization of the short–range interactions by pion loops.

4

EE, Meißner ’03

Beane, Savage ’03



Unknown Mπ-dependent NN LECs: 2@NLO + 7@N3LO + … [W. counting]

Limited convergence range of the quark-mass expansion (e.g. gA(Mπ)…)

Finite cutoff & implicit renormalization (resummation of pion-exchange)

Chiral expansion of short-range terms

Complications:

 Chiral EFT @ unphysical Mπ

pear at two loops. They produce large contact terms with a peculiar non-analytic dependence

on the light quark masses.
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APPENDIX A: RESULTS FOR INDIVIDUAL DIAGRAMS

1. Diagrams with no contact terms
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2. Diagrams with one contact term
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— momenta                   inside loops generate contri-
     butions to contact terms                    , which likely 
     need to be resummed…
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Lippmann-Schwinger eq. is linearly divergent, need infini-
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Finite-cutoff EFT 
Introduce a finite UV cutoff Λ ~ Λb ~ 500 MeV and tune bare LECs Ci(Λ) to 
experimental data (implicit renormalization). 

Lepage ’96



 Chiral EFT @ unphysical Mπ

Alternatives:
Perturbative pions (KSW) Kaplan, Savage, Wise ’96

— does not converge in certain S=1 channels for p ~ Mπ (@ physical Mπ)                  

— very slow convergence in the 1S0 channel (if at all…)                  

Semi-relativistic approach with nonperturbative V1π 

Cohen, Hansen ’99, Fleming, Mehen, Stewart ’99

EE, Gasparyan, Gegelia, Krebs ’15

Dibaryon formalism (with perturbative pions) Soto, Tarrus, ’08 -’12

— equivalent to KSW…               

— the UV behavior of the LS equation (linearly divergent) is an artifact of performing 1/mN 
     expansion for the integrand          semi-relativistic approach (3-dim reduction of the BS
     equation e.g. in the form of Kadyshevsky equation):                  

V (0)
2N = � g2A

4F 2
�

� 1 · � 2
⌅⇤1 · ⌅q ⌅⇤2 · ⌅q
⌅q 2 +M2

�

+ CS + CT⌅⇤1 · ⌅⇤2, (1)

T (⌅p 0, ⌅p)=V (0)
2N (⌅p 0, ⌅p) +

⌅ d3k

(2 ⇥)3
V (0)
2N (⌅p 0,⌅k)

mN

p2 � k2 + i �
T (⌅k, ⌅p) (2)

T (⌅p 0, ⌅p)=V (0)
2N (⌅p 0, ⌅p) +

m2
N

2

⌅ d3k

(2 ⇥)3
V (0)
2N (⌅p 0,⌅k)T (⌅k, ⌅p)

(k2 +m2
N) (E �

⇧
k2 +m2

N + i �)
, (3)

�⇧
(23 + 32)2 � 168� 1

⇥2

(4)

a+ = (7.6± 3.1)⇥ 10�3M�1
� (5)

a� = (86.1± 0.9)⇥ 10�3M�1
� (6)

m� �mN ⇤ M� (7)

V static
3N =

22⇤

i=1

Gi(⌅⇤1,⌅⇤2,⌅⇤3, � 1, � 2, � 3,⌅r12,⌅r23) Fi(r12, r23, r31) + permutations

(8)

c�3 = �2c�4 = � 4h2
A

9(m� �mN)
⌅ �2.7 GeV�1 (9)

Q ⇤ M� (10)

⇠ 1
m��mN

(11)

⇠ 1
(m��mN )2

, . . . (12)

⇠ 1
m��mN

, 1
(m��mN )2

, . . . (13)

V3N =
22⇤

i=1

Gi Fi(r12, r23, r31) + perm. (14)

1

T = V + V G0T = V + V G0V + V G0V G0V + . . .

m ! 1

VC(q) =
2

⇡

Z ⇤SFR

2M⇡

dµµ
⇢C(µ)

µ2 + q2
(1)

f
✓ r

R

◆
=

"

1 � exp

 

�
r2

R2

!#n
(2)

g2

A

4F 2

⇡

~�1 · ~q ~�2 · ~q

~q 2 + M2

⇡

⌧ 1 · ⌧ 2 + CS + CT~�1 · ~�2 (3)

Q = max

 
M⇡

⇤b

,
p

⇤b

!

(4)

Qn (5)

X(p) (6)

X(n)(p), n = 0, 2, 3, 4, . . . (7)

X(n) = X(0) + �X(2) + . . . + �X(n) . (8)

�X(n) (9)

⇤b = 600 . . . 400 MeV (10)

R = 0.8 . . . 1.2 fm (11)

Q = max
⇣
p/⇤b, M⇡/⇤b

⌘
(12)

|�rd| ' 0.004 fm (13)

�Q ' +0.008 fm2 (14)

1

logarithmically divergent; renormalizable!
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Use ChPT combined with lattice-QCD data to constrain the 
Mπ-dependence of the nucleon mass and long-range part 
of the force

Mπ-dependence of contacts from: 
resonance saturation [EE et al. ’02 ] 

Mπ dependence from resonance saturation
Berengut, EE, Flambaum, Hanhart, Meißner, Nebreda, Pelaez ’13
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+ unitarized ChPT
+ lattice QCDNuclear Physics with Chiral Effective Field Theory Evgeny Epelbaum
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Figure 3: Quark mass dependence of the deuteron binding energy (left panel), and inverse 1S0/3S1 neutron-
proton scattering lengths (middle/right pannel). Shaded bands correspond to the N2LO analysis of Ref. [28]
as explained in the text. Also shown are leading-order cutoff-independent results of Refs. [13, 29].

ing energy E2H and S-wave scattering lengths a1S0, a3S1. This is not only of considerable interest
for ongoing and upcoming lattice-QCD calculations, but also for searches of a possible spatial
and temporal variation of fundamental constants in nature [21] and questions related to anthropic
considerations, see also section 4. The mq-dependence of NN S-wave phase shifts and E2H was
analyzed at NLO in Ref. [22], see also Ref. [23] for a calculation using the power counting scheme
of Ref. [24], which relies on a perturbative treatment of 1⇥-exchange, and more recent related
studies [25, 26]. The common problem in all these calculations is the lack of knowledge about
the mq-dependence of NN contact interactions. Estimating the size of the corresponding LECs by
means of dimensional analysis leads to a very large uncertainty for chiral extrapolations of E2H,
a1S0 and a3S1. In addition, there are indications that the chiral expansion of the short-range part of
the NN force might converge slowly in the heavy-baryon approach due to the appearance of the
momentum scale

�
M⇥mN associated with radiative pions [27]. To overcome these difficulties, the

recent N2LO analysis of Ref. [28] made use of the fact that the LECs accompanying NN contact
interactions are saturated by heavy-meson exchanges [30, 31]. Using a unitarized version of ChPT
in combination with lattice-QCD results to describe the mq-dependence of meson resonances sat-
urating these LECs, the mq-dependence of NN observables was analyzed at N2LO without relying
on the chiral expansion of the short-range NN force, see Fig. 3. This allowed us to considerably
reduce the theoretical uncertainty as compared to the earlier calculations. Extending these results to
light nuclei and comparing observed and calculated primordial deuterium and helium abundances
yields a stringent limit on a variation of the light quark mass, �mq/mq = 0.2± 0.04, see also the
related earlier calculation in Ref. [21]. While the calculated chiral extrapolations for E2H are con-
sistent with our earlier analysis in [22] as well as with the recent phenomenological calculation of
Ref. [32], unquenched lattice-QCD results of the NPLQCD Collaboration [33] seem to indicate an
opposite trend with a stronger-bound deuteron at large values of mq. It is not clear at this stage
whether there is any contradiction since the lattice results are so far only available at rather large
pion masses with M⇥ > 353.7 MeV, see [1]. Using the available lattice data in conjunction with the
(presumably unrealistic) assumptions of (i) perturbativeness of the 1⇥-exchange potential in the
3S1-3D1 channel and (ii) validity of the chiral expansion for NN scattering at such large values of
M⇥ leads to a qualitatively different dependence of E2H on mq [25, 26].
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 Intermediate summary

— No conclusive predictions for Mπ dependence of few-N observables…

— Mπ dependence of the long-range interactions (π-exchanges) can be 
     determined from lattice-QCD in combination with ChPT

Nuclear chiral EFT at unphysical Mπ

— Strict chiral expansion of the short-range interactions is difficult to control;
     phenomenological parametrizations based on lattice-QCD data seem 
     more feasible… 

Matching with lattice QCD in finite volume
— Probably, most efficient at the level of bare LECs Ci(Λ) which can be 
     tuned to the spectrum in a finite volume… 

— For lower Mπ, pions need to be kept explicitly; pi-less EFT not enough!



 
Low-Energy Theorems

as a tool for extrapolation in energy 

Heavy pions: pionless EFT
— extrapolation in the number of nucleons  Barnea, Kirscher, van Kolck, …  

— extrapolate the NN amplitude in energy at fixed Mπ 

Beane, Savage, EE, Glöckle, Meißner, Gegelia, Soto, Chen, …

Baru, EE, Filin, Gegelia

Light pions: chiral EFT
— extrapolate in Mπ (and in the number of nucleons)

Light pions: Low-Energy Theorems (LETs)
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Generalization to the modified ERE by „subtracting“ effects due to the long-range force
van Haeringen, Kok PRA 26 (1982) 1218
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 MERE and Low-energy theorems
Long-range forces impose correlations between the ER coefficients (low-energy theorems)
Cohen, Hansen ’99; Steele, Furnstahl ‘00
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calculate all „light“ quantities, reconstruct          and predict all coefficients in the ERE
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FIG. 1: Correlations between the inverse scattering length a�1, e↵ective range r and the first three shape parameters v2, v3
and v4 induced by the one-pion exchange interaction in the 1S0 (left panel) and 3S1 (right panel) channels. Solid rectangles,
dimonds and circles (open triangles) correspond to the values of r, v2 and v4 (v3) extracted from the Nijmegen partial wave
analysis [47, 48].
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FIG. 2: Cubic polynomial regression fits to lattice QCD data for the pion decay constant F⇡, nucleon mass mN and the
nucleon axial-vector coupling constant gA. Lattice data for F⇡ and mN (gA) correspond to the 2 + 1 flavor simulations of
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Even in the 3S1 channel, the accuracy is insufficient when using effective range as input: 

→ go to NLO LETs by including the (modified) effective range correction modeled via                                                                          
5

TABLE I: Low-energy theorems for the neutron-proton 3S1 partial wave. At NLO, the short-range interaction is modeled via
resonance saturation in terms of a heavy pseudoscalar meson exchange as described in the text.

a [fm] r [fm] v2 [fm3] v3 [fm5] v4 [fm7]

LO LET 5.42? 1.60 �0.05 0.82 �5.0

NLO LET 5.42? 1.75? 0.06 0.70 �4.0

Nijmegen PWA [] 5.42 1.75 0.04 0.67 �4.0

?Fit parameter.
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I denote here with the superscript “L” all quantities that can be computed solely from the long-range part of the
potential. The modified e↵ective range function FM

l (k2) defined in this way does not contain the left-hand singularity
associated with the long-range potential and reduces, per construction, to the ordinary e↵ective range function Fl(k2)
for VL = 0. It is a real meromorphic function in a much larger region given by r�1

s as compared to Fl(k2).1 If the
long-range interaction is due to a Coulomb potential, VL(r) = ↵/r, the Jost solution and, consequently, the function
ML

l (k) can be calculated analytically. For example, for l = 0 and the repulsive Coulomb potential, the MERE takes
the following well-known form:

FC(k2) = C2
0 (⌘) k cot[�(k) � �C(k)] + 2k ⌘ h(⌘) , (2.7)

where the Coulomb phase shift is �C ⌘ arg �(1 + i⌘) and the quantity ⌘ is given by
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Here,  (z) ⌘ �0(z)/�(z) denotes the digamma function. For more details on the analytic properties of the scattering
amplitude and related topics I refer the reader to the review article [46].

After these preparations, we are now in the position to discuss the implications of the long-range interaction on the
energy dependence of the phase shift. It is natural to assume that the coe�cients in the ERE and MERE (except for
the scattering length) are driven by the scales ml and ms associated with the lowest left-hand singularities, see [47] for
a related discussion. The knowledge of the long-range interaction VL allows to compute the quantities fL

l (k), ML
l (k)

and �Ll (k) entering the right-hand side of Eq. (2.4) and thus to express �l(k) and the ordinary e↵ective range function
Fl(k2) in terms of the modified one, FM

l (k2). The MERE for FM
l (k2) then yields an expansion of the subthreshold

parameters entering Eq. (2.3) in powers of ml/ms. In particular, using the first few terms in the MERE as input
allows to make predictions for all coe�cients in the ERE. The appearance of the correlations between the subthreshold
parameters in the above-mentioned sense which I will refer to as low-energy theorems (LETs) is the only signature of
the long-range interaction at low energy (in the two-nucleon system). The LETs allow to test whether the long-range
interactions are incorporated properly in nuclear chiral EFT and thus provide an important consistency check.

1 Note that the existence of ML
l (k) implies certain constraints on the small-r behavior of VL(r).
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a [fm] r [fm] v2 [fm3] v3 [fm5] v4 [fm7]

LO LET 5.42? 1.60 �0.05 0.82 �5.0

NLO LET 5.42? 1.75? 0.06 0.70 �4.0

Nijmegen PWA [] 5.42 1.75 0.04 0.67 �4.0

?Fit parameter.
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��
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the scattering length) are driven by the scales ml and ms associated with the lowest left-hand singularities, see [47] for
a related discussion. The knowledge of the long-range interaction VL allows to compute the quantities fL
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and �Ll (k) entering the right-hand side of Eq. (2.4) and thus to express �l(k) and the ordinary e↵ective range function
Fl(k2) in terms of the modified one, FM

l (k2). The MERE for FM
l (k2) then yields an expansion of the subthreshold

parameters entering Eq. (2.3) in powers of ml/ms. In particular, using the first few terms in the MERE as input
allows to make predictions for all coe�cients in the ERE. The appearance of the correlations between the subthreshold
parameters in the above-mentioned sense which I will refer to as low-energy theorems (LETs) is the only signature of
the long-range interaction at low energy (in the two-nucleon system). The LETs allow to test whether the long-range
interactions are incorporated properly in nuclear chiral EFT and thus provide an important consistency check.

1 Note that the existence of ML
l (k) implies certain constraints on the small-r behavior of VL(r).
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For the 1S0 channel see: EE, Gasparyan, Gegelia, Krebs, EPJA 51 (2015) 71
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FIG. 3: Correlations between the inverse scattering length a�1, e↵ective range r and the first three shape parameters v2, v3 and
v4 in the 3S1 partial wave induced by the one-pion exchange interaction. Solid lines show the predictions of the LO LETs while
light-shaded bands depict the results of NLO LETs and reflect the estimated uncertainty due to unknown M⇡-dependence of
the subleading short-range interaction as explained in the text.

TABLE II: Available experimental and infinite-volume lattice QCD data for nucleon-nucleon scattering parameters and bound
state energies in the 1S0 and 3S1 channels at various values of the pion mass.

M⇡ = 138 MeV M⇡ = 300 MeV [41] M⇡ = 390 MeV [35] M⇡ = 510 MeV [37] M⇡ = 805 MeV [39]

The 3S1 channel

Bd [MeV] 2.224 14.5(0.7)(+2.4
�0.7) 11(05)(12) 11.5(1.1)(0.6) 19.5(3.6)(3.1)(0.2)

a [fm] 5.42 not given not given not given 1.82(+0.14
�0.13)(

+0.17
�0.12)

r [fm] 1.75 not given not given not given 0.906(+0.068
�0.075)(

+0.068
�0.084)

The 1S0 channel

Bd [MeV] – 8.5(0.7)(+2.2
�0.4) 7.1(5.2)(7.3) 7.4(1.3)(0.6) 15.9(2.7)(2.7)(0.2)

a [fm] �23.7 not given not given not given 2.33(+0.19
�0.17)(

+0.27
�0.20)

r [fm] 2.67 not given not given not given 1.130(+0.071
�0.077)(

+0.059
�0.063)

?Fit parameter.

good convergence and accuracy of the LETs for low values of Mπ (below 200 MeV)
sizable uncertainty at pion masses above 400 MeV (even at NLO) 

LETs at nonphysical pion masses (at NLO, δβ = 0.5)



 Low-energy theorems for NN scattering
Is the conjectured linear Mπ-behavior of Mπ r(3S1) consistent with the trend in BEs?
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FIG. 4: Chiral extrapolation of the e↵ective range in the 3S1 partial wave suggested in Ref. [39]. Solid square and filled triangle
refer to the experimental value and he lattice-QCD result of that work, respectively.
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FIG. 5: NLO LET predictions for the pion mass dependence of the deuteron binding energy, the ratio �d/M⇡, the ratio a/r
and the first three shape parameters in the 3S1 partial wave assuming the linear M⇡-dependence of the e↵ective range as shown
in Fig. 4. Dark-shaded bands show our estimation of the uncertainty of the NLO LETs due to unknown M⇡-dependence of the
subleading short-range interaction, light-shaded bands depict the uncertainty in the linear extrapolation of the e↵ective range
used as input as shown in Fig. 4.

NPLQCD Collaboration, 
Phys. Rev. C88 (2013) 2, 024003 

8

-2

-1

0

1 M� = 50 MeVrM�

v2M3
�

v3M5
�

v4M7
�

-2

-1

0

1

2
M� = 100 MeV

-2

-1

0

1

2 M� = 150 MeV

-2

-1

0

1

2

3

0 0.5 1

1/(aM�)

M� = 200 MeV

-2

-1

0

1

2

3

0 0.5 1

1/(aM�)

M� = 300 MeV

-2

-1

0

1

2

3

4

0 0.5 1

1/(aM�)

M� = 400 MeV

0

5

10

15

20

25 Bd [MeV]

0

0.1

0.2

0.3

0.4

0.5 �d/M�

0

2

4

6

8

10

a/r

0

1

2

3

4

0 0.2 0.4 0.6 0.8

M� [GeV]

M�r

-0.5

0

0.5

1

1.5

2

2.5

M3
�v2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8

M� [GeV]

M5
�v3

-2

-1

0

1

0 0.2 0.4 0.6 0.8

M� [GeV]

M7
�v4

Yamazaki et al.
NPLQCD

NPLQCD, prelim.

2

FIG. 4: Chiral extrapolation of the e↵ective range in the 3S1 partial wave suggested in Ref. [39]. Solid square and filled triangle
refer to the experimental value and he lattice-QCD result of that work, respectively.
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FIG. 5: NLO LET predictions for the pion mass dependence of the deuteron binding energy, the ratio �d/M⇡, the ratio a/r
and the first three shape parameters in the 3S1 partial wave assuming the linear M⇡-dependence of the e↵ective range as shown
in Fig. 4. Dark-shaded bands show our estimation of the uncertainty of the NLO LETs due to unknown M⇡-dependence of the
subleading short-range interaction, light-shaded bands depict the uncertainty in the linear extrapolation of the e↵ective range
used as input as shown in Fig. 4.
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FIG. 4: Chiral extrapolation of the e↵ective range in the 3S1 partial wave suggested in Ref. [39]. Solid square and filled triangle
refer to the experimental value and he lattice-QCD result of that work, respectively.
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FIG. 5: NLO LET predictions for the pion mass dependence of the deuteron binding energy, the ratio �d/M⇡, the ratio a/r
and the first three shape parameters in the 3S1 partial wave assuming the linear M⇡-dependence of the e↵ective range as shown
in Fig. 4. Dark-shaded bands show our estimation of the uncertainty of the NLO LETs due to unknown M⇡-dependence of the
subleading short-range interaction, light-shaded bands depict the uncertainty in the linear extrapolation of the e↵ective range
used as input as shown in Fig. 4.
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3S1

Baru, EE, Filin, Gegelia ’15

Are the NPLQCD results for BE & phase shifts @ Mπ=450 MeV consistent?
Baru, EE, Filin, to appear
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FIG. 3: (Color online) Neutron-proton phase shift (left panel) and the e↵ective-range function (right panel) in the 3S1 channel
calculated by the NPLQCD collaboration at M⇡ ⇠ 450 MeV [15] in comparison with the results predicted by the LETs
when using the lattice-QCD result for the binding energy as input. The phase shift corresponds to the Blatt-Biedenharn
parametrization of the S-matrix [41]. Filled black regions correspond to the lattice-QCD calculations. Orange bands show the
results from the LO LETs, where the uncertainty is entirely given by the uncertainty in Bd quoted in Eq. (3.15). Dark blue
bands correspond to the NLO LET result and take into account both the uncertainty in Bd as well as the variation of the
subleading short range term � as explained in the text. The band between two dashed blue lines in the right panel corresponds
to our NLO calculation with the increased variation of the subleading short-range term, see the text for more details. [AF:
Black dotted line added.] [AF: dashed line is now corresponding to �� = 1.0]

M⇡. While the LETs are certainly beyond their range of applicability at such heavy pion masses, this conjecture was
tested using the LETs in our previous work [23], where the resulting M⇡-dependence of the deuteron binding energy
was indeed found to be in good agreement with the general trend of lattice data [6, 13–15, 17].

Recently, new results for NN scattering in the 3S1 and 1S0 channels have been reported by the NPLQCD collaboration
at M⇡ ⇠ 450 MeV [15]. The calculations were performed for nf = 2+1 flavors of light quarks at three lattice volumes
of L = 2.8 fm, L = 3.7 fm, and L = 5.6 fm using the lattice spacing of b = 0.12 fm. In analogy to their previous
work, the scattering phase shifts for the 3S1 and 1S0 partial waves were extracted for several values of the cms NN
momenta using the extended Lüscher approach [3–5] as shown by the black filled regions in Fig. 3 for the case of the
3S1 channel. In addition to the phase shifts, the binding energies of the deuteron and the dineutron were extracted.
Thus, it is interesting to test whether these results fulfill the LETs introduced above.

A. The 3S1 channel

The deuteron binding energy calculated in Ref. [15] at M⇡ ' 450 MeV at three lattice volumes and extrapolated to
the infinite volume is

Bd = 14.4
�
+3.2
�2.6

�
MeV, (3.15)

where the errors include statistical and systematic uncertainties as well as the extrapolation uncertainty combined in
quadrature. Further, the first two coe�cients in the ERE, namely the scattering length and the e↵ective range, were
determined in Ref. [15] by fitting the e↵ective range approximation of the e↵ective range function,

k cot(�3S1
) ' �

1

a(3S1)
+

1

2
r(

3S1)k2 , (3.16)

to the two lowest-energy scattering data points and the deuteron binding energy, see the grey bants in the right panel
of Fig. 3. Notice that all three lattice data correspond to nucleon momenta below the branch point |k| = M⇡/2 of the
left-hand cut from the OPEP. The resulting values for the inverse scattering length and the e↵ective range in units
of the pion mass quoted in Ref. [15] are

�
M⇡a(

3S1)
��1

= �0.04
�
+0.07
�0.10

��
+0.08
�0.17

�
, M⇡r(

3S1) = 7.8
�
+2.2
�1.5

��
+3.5
�1.7

�
, (3.17)

3S1Use                                       [Beane et al.’16]

as input to predict phase shifts via LETs

7

FIG. 3: (Color online) Neutron-proton phase shifts (left panel) and the e↵ective-range function (right panel) in the 3S1 channel
calculated on the lattice at M⇡ ⇠ 450 MeV [9] (filled black regions) in comparison with the predictions based on the LETs
at LO (orange light-shaded bands) and NLO (blue dark-shaded and hatched blue light-shaded bands) using the NPLQCD
result for the deuteron binding energy Bd as input. The uncertainty at LO shown by the orange bands is entirely given by the
uncertainty of Bd in Eq. (3.15). The NLO dark-shaded (hatched light-shaded) bands correspond to the uncertainty in Bd and
the theoretical uncertainty of the LETs estimated via the variation of � with �� = 0.5 (�� = 1.0) combined in quadrature. The
grey light- and dark-shaded bands in the right panel depict the fit results of the lattice points of Ref. [9] based on the e↵ective
range approximation. The energy of the bound (virtual) states corresponds to the intersection points of the e↵ective-range

function k cot �(
3S1) and the function ±

p
�(k/M⇡)2, shown by the dotted line in the right panel, in the lower (upper) half-plane.

The phase shift corresponds to the Blatt-Biedenharn parametrization of the S-matrix [42].

that paper that the e↵ective range, expressed in units of the pion mass, may be approximated by a linear function of
M⇡. While the LETs are certainly beyond their range of applicability at such heavy pion masses, this conjecture was
tested using the LETs in our previous work [23], where the resulting M⇡-dependence of the deuteron binding energy
was indeed found to be in good agreement with the general trend of lattice data [7–9, 18, 20].

Recently, new results for NN scattering in the 3S1 and 1S0 channels have been reported by the NPLQCD collaboration
at M⇡ ⇠ 450 MeV [9]. The calculations were performed for nf = 2 + 1 flavors of light quarks at three lattice volumes
of L = 2.8 fm, L = 3.7 fm, and L = 5.6 fm using the lattice spacing of b = 0.12 fm. In analogy to their previous
work, the scattering phase shifts for the 3S1 and 1S0 partial waves were extracted for several values of the cms NN
momenta using the extended Lüscher approach [39–41] as shown by the black filled regions in Fig. 3 for the case of the
3S1 channel. In addition to the phase shifts, the binding energies of the deuteron and the dineutron were extracted.
Thus, it is interesting to test whether these results fulfill the LETs introduced above.

A. The 3S1 channel

The deuteron binding energy calculated in Ref. [9] at M⇡ ' 450 MeV at three lattice volumes and extrapolated to
the infinite volume is

Bd = 14.4
�
+3.2
�2.6

�
MeV, (3.15)

where the errors include statistical and systematic uncertainties as well as the extrapolation uncertainty combined in
quadrature. Further, the first two coe�cients in the ERE, namely the scattering length and the e↵ective range, were
determined in Ref. [9] by fitting the e↵ective range approximation of the e↵ective range function,

k cot(�3S1
) ' �

1

a(3S1)
+

1

2
r(

3S1)k2 , (3.16)

to the two lowest-energy scattering data points and the deuteron binding energy, see the grey bands in the right panel
of Fig. 3. Notice that all three lattice data correspond to nucleon momenta below the branch point |k| = M⇡/2 of the
left-hand cut from the OPEP. The resulting values for the inverse scattering length and the e↵ective range in units

NPLQCD  results for phase shifts at the 
two  lowest  energies  are  incompatible 
with their results for Bd: Underestimated
systematics??

NPLQCD ’16

NLO LETs
LO LETs
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FIG. 4: (Color online) Correlations between the inverse scattering length a�1, e↵ective range r and the binding energy in the
3S1 partial wave induced by the one-pion exchange potential. The red solid and dashed purple lines show the predictions of the

LO LETs for M⇡r
(3S1) and Bd. The light-shaded bands between the red solid and dashed purple lines visualize the predictions

of the NLO LETs for M⇡r
(3S1) and Bd, respectively, and reflect the theoretical uncertainty estimated via the variation of � with

�� = 0.5 as described in the text. The horizontal dotted lines specify the range of values for Bd consistent with the lattice-QCD
results of Ref. [9] for this observable. The solid dark-red circle (blue rectangle) shows the LO (NLO) LET predictions for
the e↵ective range. The open black circle gives the result for the inverse scattering length and e↵ective range reported by
the NPLQCD collaboration [9] while the grey area around it shows the estimated uncertainty from that paper. All results
correspond to the Blatt-Biedenharn parametrization of the S-matrix [42].

binding energy versus the inverse scattering length at NLO. Further, the two horizontal dotted lines separate the region
of the binding energies consistent with the NPLQCD result of Ref. [9], Eq. (3.15), for the binding energy. Projecting
this area onto the x-axis, as shown by the vertical lines, one obtains the corresponding values of the scattering length
and the e↵ective range from the LETs. In particular, we find

�
M⇡a(

3S1)

LET,LO

��1
= 0.229

�
+0.019
�0.018

�
, M⇡r(

3S1)

LET,LO = 1.62
�
+0.06
�0.06

�
,

�
M⇡a(

3S1)

LET,NLO

��1
= 0.196

�
+0.014
�0.013

��
+0.007
�0.004

�
, M⇡r(

3S1)

LET,NLO
= 2.44

�
+0.08
�0.08

��
+0.12
�0.17

�
(3.18)

which correspond to the following values in units of fm

a(
3S1)

LET,LO = 1.915
�
+0.159
�0.147

�
fm, r(

3S1)

LET,LO = 0.71
�
+0.02
�0.03

�
fm ,

a(
3S1)

LET,NLO
= 2.234

�
+0.156
�0.144

��
+0.052
�0.072

�
fm, r(

3S1)

LET,NLO
= 1.07

�
+0.03
�0.03

��
+0.05
�0.08

�
fm. (3.19)

Here, the errors in the first brackets reflect the uncertainty in the value of the deuteron binding energy in Eq. (3.15)
used as input. For the NLO results, we also give in the second brackets an estimation of the theoretical uncertainty
corresponding to the choice of �� = 0.5. Clearly, the above values are at variance with those extracted by the
NPLQCD collaboration and given in Eq. (3.17). In particular, our value for the e↵ective range is about a factor of 3
smaller than the one found in Ref. [9]. Interestingly, the NLO LET prediction for the e↵ective range is in excellent

agreement with the assumed linear in M⇡ behavior of the quantity M⇡r(
3S1) conjectured in Ref. [18], see the right

panel of Fig. 1. For the sake of completeness, we also give the NLO LET results based on a more conservative
uncertainty estimation resulting by employing a weaker constraint on the allowed M⇡-dependence of the subleading
contact interaction corresponding to the choice of �� = 1:

�
M⇡a(

3S1)

LET,NLO

��1
= 0.196

�
+0.014
�0.013

��
+0.018
�0.008

�
, M⇡r(

3S1)

LET,NLO
= 2.44

�
+0.08
�0.08

��
+0.21
�0.47

�
(3.20)

Consequently, different results for the scattering length and effective range: 

NPLQCD meets LETs: The 3S1 channel

NPLQCD:

NLO LETs:
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FIG. 3: (Color online) Neutron-proton phase shifts (left panel) and the e↵ective-range function (right panel) in the 3S1 channel
calculated on the lattice at M⇡ ⇠ 450 MeV [9] (filled black regions) in comparison with the predictions based on the LETs
at LO (orange light-shaded bands) and NLO (blue dark-shaded and hatched blue light-shaded bands) using the NPLQCD
result for the deuteron binding energy Bd as input. The uncertainty at LO shown by the orange bands is entirely given by the
uncertainty of Bd in Eq. (3.15). The NLO dark-shaded (hatched light-shaded) bands correspond to the uncertainty in Bd and
the theoretical uncertainty of the LETs estimated via the variation of � with �� = 0.5 (�� = 1.0) combined in quadrature. The
grey light- and dark-shaded bands in the right panel depict the fit results of the lattice points of Ref. [9] based on the e↵ective
range approximation. The energy of the bound (virtual) states corresponds to the intersection points of the e↵ective-range

function k cot �(
3S1) and the function ±

p
�(k/M⇡)2, shown by the dotted line in the right panel, in the lower (upper) half-plane.

The phase shift corresponds to the Blatt-Biedenharn parametrization of the S-matrix [42].

that paper that the e↵ective range, expressed in units of the pion mass, may be approximated by a linear function of
M⇡. While the LETs are certainly beyond their range of applicability at such heavy pion masses, this conjecture was
tested using the LETs in our previous work [23], where the resulting M⇡-dependence of the deuteron binding energy
was indeed found to be in good agreement with the general trend of lattice data [7–9, 18, 20].

Recently, new results for NN scattering in the 3S1 and 1S0 channels have been reported by the NPLQCD collaboration
at M⇡ ⇠ 450 MeV [9]. The calculations were performed for nf = 2 + 1 flavors of light quarks at three lattice volumes
of L = 2.8 fm, L = 3.7 fm, and L = 5.6 fm using the lattice spacing of b = 0.12 fm. In analogy to their previous
work, the scattering phase shifts for the 3S1 and 1S0 partial waves were extracted for several values of the cms NN
momenta using the extended Lüscher approach [39–41] as shown by the black filled regions in Fig. 3 for the case of the
3S1 channel. In addition to the phase shifts, the binding energies of the deuteron and the dineutron were extracted.
Thus, it is interesting to test whether these results fulfill the LETs introduced above.

A. The 3S1 channel

The deuteron binding energy calculated in Ref. [9] at M⇡ ' 450 MeV at three lattice volumes and extrapolated to
the infinite volume is

Bd = 14.4
�
+3.2
�2.6

�
MeV, (3.15)

where the errors include statistical and systematic uncertainties as well as the extrapolation uncertainty combined in
quadrature. Further, the first two coe�cients in the ERE, namely the scattering length and the e↵ective range, were
determined in Ref. [9] by fitting the e↵ective range approximation of the e↵ective range function,

k cot(�3S1
) ' �
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a(3S1)
+

1

2
r(

3S1)k2 , (3.16)

to the two lowest-energy scattering data points and the deuteron binding energy, see the grey bands in the right panel
of Fig. 3. Notice that all three lattice data correspond to nucleon momenta below the branch point |k| = M⇡/2 of the
left-hand cut from the OPEP. The resulting values for the inverse scattering length and the e↵ective range in units
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In both cases, there is no reason to expect
the approximation                                      to be valid for                             .
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NPLQCD meets LETs: The 3S1 channel

Moreover, the second, deeper bound state is (normally) to be viewed as an artifact 
of the effective range approximation:

— NPLQCD solution:
— physical pion mass:
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 Summary part II

NPLQCD results at Mπ ~ 450 MeV for the 1S0 / 3S1 phase shifts are 
incompatible with their Bnn / Bd energies (within errors). 
Underestimated systematics? 

LETs allow to reconstruct the NN scattering amplitude at fixed Mπ using 
a single observable (e.g. binding energy) as input 

The linear in Mπ dependence of Mπ r(3S1) conjectured by the NPLQCD 
collaboration based on their Mπ ~ 800 MeV results is consistent with the 
common trend for Bd

extrapolations of lattice-QCD results in energy, 
self-consistency checks

LETs: a useful addition to the lattice QCD toolbox! 


