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I. Fundamental issue 

- The fake plateau problem -

T. Iritani et al. (HAL QCD), JHEP1610(2016)101 (arXiv:1607.06371)



The fake plateau problem
Modeling 
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�Eel �
1
L2

c = 0.01 1% contamination

b = ±0.1

�Eel = 50 MeV at L � 4 fm

10 % contamination b = 0 for a comparison

1

�Eel
' 4 fm

1

�Einel
' 0.4 fm

+ add errors and fluctuations increasing with t

the inelastic energy from heavy pions 

m⇡ ' 500 MeV, mN ' 2 GeV, L ' 4 fm



One can not tell which is correct by its plateau behavior at small t.  

“Plateaux” at t ~ 1 fm but some are fake.

The fake plateau problem

�Ee↵
(t) = �1

a
log

R(t+ a)

R(t)



Response by Z. Davoudi (arXiv:1711.02020 [hep-lat])

 ``What is misleading about this conclusion is that while for generic interpolating operators 
(“sources” or “sinks”) an O (1) overlap to all states in the volume is plausible (thus enforcing 
the estimates given above), with physically-motivated source and/ or sink operators, the 
exponential degradation of the signal for the ground state can be compensated by a large 
overlap factor to the ground state, pushing the start of the single-exponential region in the 
correlation functions to much earlier times than the naive estimates.’’

Since the plateau behavior at small t can not tell whether it is true, 
``optimizing” operator for the early plateau does not necessarily give a truly 
optimized operator.

To optimize operator can easily produce the fake plateau, which may fool you. 

The ``plateau” is NOT enough.

Our comments



II. Operator dependences 

- A sign of the fake plateau I -

T. Iritani et al. (HAL QCD), JHEP1610(2016)101 (arXiv:1607.06371)



Lattice Setup: Wall Source and Smeared Source
! ΞΞ interaction from both direct and HAL QCD methods

! CHECK 2 quark sources — mixture of excited states are different

wall source
standard of HAL QCD

smeared source
standard of direct method†

WALL SOURCE SMEARED SOURCE

SINK SINK

" setup — 2 + 1 improved Wilson + Iwasaki gauge†

• lattice spacing: a = 0.08995(40) fm, a−1 = 2.194(10) GeV
• lattice volume: 323 × 48, 403 × 48, 483 × 48, and 643 × 64

mπ = 0.51 GeV, mN = 1.32 GeV, mK = 0.62 GeV, mΞ = 1.46 GeV

† Yamazaki-Ishikawa-Kuramashi-Ukawa, arXiv:1207.4277. 7 / 16

Source operator dependence

��(1S0)NN(1S0)

2+1 flavor QCD
a = 0.09 fm (a�1 = 2.2 GeV)
m⇡ = 510 MeV,mN = 1320 MeV

same gauge configurations of YIKU 2012

6 quarks



0 5 10 15 20 25
t

2.08

2.085

2.09

2.095

2.1

2.105

2mN
eff

ENN
eff

exp source

tN
E=tNN

E

0 5 10 15 20 25
t

2.08

2.085

2.09

2.095

2.1

2.105

2mN
eff

ENN
eff

wall source

tN
W

Response by YIK2017 (arXiv:1710.08066 [hep-lat])
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The plateau of wall source at small t < tR = max(tN , tNN ) is unreliable.

No operator dependence
Both agree at t > tR.

R(t) = e��Et
�
1 + b e��Eelt + c e��Einelt

�

The fake plateaux are caused by b, not by c.

Our comments

Indeed cR can be small by the cancellation between cN and cNN .

The ``plateau” is still NOT enough.
The fake plateaux can appear for both sources.

Thus small cN and cNN are neither necessary nor su�cient condition.

Nf = 0, m⇡ ' 800 MeV, a�1 ' 1.54 GeV



b controls the value of the fake plateau. c controls the convergence 
to the fake plateau.

The wall source seems to have smaller c in the ratio due to the cancellation.



Sink operator dependence
G(t� t0) =

X

x,y

g(|x� y|)hO(x, t)O(y, t)JOO(t0)i g(r) = 1 +A exp(�Br)

Smeared source Wall source

The plateaux of the smeared source are 
sensitive to the sink operator. The wall source is insensitive.

The plateaux from smeared 
source are fake. The ``plateau” is NOT enough.



More on operator dependences

NPL2013/CalLat2017 used the same gauge configurations.

bost momentum: p = 2⇡n/L

NPL2013: smeared sources CalLat2017: smeared sources

d(displaced)

N N

< 1%

5%
p-value

4%

<1%

<1%2%

Source Operator dependence

d = 0

3%



Response by NPL (arXiv:1705.09239 [hep-lat])

``The state closer to threshold (and additionally, the negative energy state near threshold in 
the 1S0  channel) has strong overlap onto the non-local NN interpolating field, and has not 
been found in previous works.”

``Unfortunately the figure includes a second state from Ref. [14] that the authors of Ref. [14] 
explicitly indicate is not the ground state, and reporting it as such is a critical error on which 
many of the invalid arguments of HAL are based.”
Statement in CalLat2017(PLB765(2017)285)

Our comments
This kind of excuses might be justified only if (1) we know that there must exist 
two (or more) states, and (2) these states are very different.
Ex.(A) string breaking. The Wilson loop operator may have a poor overlap to two 
heavy-light meson state.
Ex.(B) rho resonance: rho meson operator may have a poor overlap to two pions.
Even such cases, the variational analysis including the two types of operators is 
required for a reliable calculation.

However it is not legitimate to use such an excuse to 
deny the operator dependence for the NN case without 
any explicit evidences.

N N



A similar symptom ?
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FIG. 6: The shifts in the energy of the two-baryon systems in the 27, 10, 10 and 8A irreps from that of two
non-interacting baryons at rest in the three lattice volumes, i.e., �E = EBB � 2MB. Energies are expressed
in lattice units (l.u.). Different columns correspond to different volumes and boosts, as indicated.

no bearing on the results reported by other groups using more optimal sources, such as those used
in this work. Indeed, the quality of plateaus in the two-baryon systems are comparable to those
of the single-nucleon system in the present study, demonstrating that the ground state (and the
first excited state) of these systems can be obtained efficiently, with the results from two different
source-sink combinations being fully consistent.

Another argument to consider when assessing the claims by Iritani et al. regarding the occur-
rence of so-called “mirage plateaus” in two-baryon systems follows from observations of the volume
dependence of the correlation functions. Fig. 7 shows the EMPs in each of the two-baryon channels
studied in this work in the three different lattice volumes. Volume dependence is clearly visible in
states identified as scattering states. No significant volume dependence is observed for the lowest-
lying state, strongly supporting the hypothesis that the ground state in these channels is a bound
state. If the plateaus observed for the lowest-lying state are to be identified as “mirages” (that

20

FIG. 8: k

⇤
cot � values in the two-baryon channels belonging to the four irreps 27, 10, 10 and 8A, obtained

by solving Eq. (2) at the corresponding values of the square of the CM momentum of the two baryons, k

⇤2.
The functions on the left-hand side of this equation for l = m = 0, i.e., 2p

⇡L
Zd

00[1; (k

⇤
L/2⇡)

2
], are also shown

at the corresponding volumes and CM boost momenta. The thick points cover the statistical uncertainty in
the results, while the thin points cover the statistical and systematic uncertainties combined in quadrature.
Quantities are expressed in lattice units (l.u.).

Eq. (5), up to negligible contaminations from �-wave interactions. The resulting k

⇤
cot � functions

are plotted in Fig. 8 for the ten energy eigenvalues obtained in the previous section in each of these
channels.

2. Effective range expansion parameters

Below the start of the t-channel cut, the k

⇤
cot � function for the S-wave (↵-wave) amplitude is

anticipated to be well described by an ERE, see Eq. (7). Assuming that the pion is the lightest
hadron exchanged between the baryons at this value of the quark masses, the t-channel cut starts
at

��
k

⇤2��
= m

2
⇡/4 ⇡ 0.088 l.u., considerably higher than the

��
k

⇤2�� values obtained from the FV
spectra in all channels. The constrained values of k

⇤
cot � as a function of k

⇤2 can thus be fit by
two and three-parameter forms in each of the two-baryon channels, and the resulting fit bands
are shown in Figs. 9-12. The k

⇤
cot � values at the ten kinematic points considered here are also

NPL(arXiv:1706.06550)

There would be two bound states if plateaux were correct.

Otherwise there is the operator dependence in this channel.



Sink operator independence
NPL(arXiv:1706.06550) 14

FIG. 3: The EMPs of two baryons at rest (upper panel) and with d = (0, 0, 2) (lower panel) in the 10 irrep
for the SP (blue) and SS (pink) source-sink combinations (the upper panel of each segment), as well as the
EMP (the lower panel of each segment) corresponding to the ratio of the two-baryon correlation function
and the square of the single-baryon correlation function, the former with the SP (or SS as indicated) and
the latter with the SS source-sink combinations. The bands correspond to one-exponential fits to the SP/SS
(or SS/SS as indicated) ratios of correlation functions and obtain the energy shifts �E = EBB � 2MB . See
the caption of Fig. 2 for more details.

the ground state after a short time interval. On the other hand, interpolators with back-to-back
momenta appear to predominantly overlap with states with positive energy shifts in the volume,
and are almost orthogonal to the operators of the first type. The quality of plateaus in the EMPs
with both types of interpolators was found to be comparable, suggesting that each set primarily
overlaps onto one state and not the other. This allows the first excited states of the two-baryon
systems to be extracted using the simplest back-to-back momentum configurations for baryons.
The only exception is for the 48

3 ⇥ 64 ensemble, where the splitting between the energy levels
of the systems is small (being comparable to the uncertainties in the energies) and it can not be
established that the first excited state is only minimally mixed into the nearby ground state. As
a result, while for the smaller volumes two energy levels are extracted, for the 48

3 ⇥ 64 ensemble

135 MeV

40 MeV

NN(3S1)

�ENN (t)

ENN (t)

Smeared source - Point Sink (SP) Smeared source - Smeared Sink (SS)

ENN (t) from SP and SS roughly agree in large scale.



Sink operator independence
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FIG. 3: The EMPs of two baryons at rest (upper panel) and with d = (0, 0, 2) (lower panel) in the 10 irrep
for the SP (blue) and SS (pink) source-sink combinations (the upper panel of each segment), as well as the
EMP (the lower panel of each segment) corresponding to the ratio of the two-baryon correlation function
and the square of the single-baryon correlation function, the former with the SP (or SS as indicated) and
the latter with the SS source-sink combinations. The bands correspond to one-exponential fits to the SP/SS
(or SS/SS as indicated) ratios of correlation functions and obtain the energy shifts �E = EBB � 2MB . See
the caption of Fig. 2 for more details.

the ground state after a short time interval. On the other hand, interpolators with back-to-back
momenta appear to predominantly overlap with states with positive energy shifts in the volume,
and are almost orthogonal to the operators of the first type. The quality of plateaus in the EMPs
with both types of interpolators was found to be comparable, suggesting that each set primarily
overlaps onto one state and not the other. This allows the first excited states of the two-baryon
systems to be extracted using the simplest back-to-back momentum configurations for baryons.
The only exception is for the 48

3 ⇥ 64 ensemble, where the splitting between the energy levels
of the systems is small (being comparable to the uncertainties in the energies) and it can not be
established that the first excited state is only minimally mixed into the nearby ground state. As
a result, while for the smaller volumes two energy levels are extracted, for the 48

3 ⇥ 64 ensemble

40 MeV

Need to check �ENN from SP and SS agree in finer scale.

30 MeV

200 MeV



Two pole fitting NPL(PRD96(2017)094512)

Our comments

R(t) = e��Et
�
1 + b e��Eelt + c e��Einelt

�

This method may identify the inelastic states, but can not disentangle the ground 
state from elastic excited states.

N nn

deuteron

�MN ' 0.8 GeV �Mnn ' 1.0 GeV

�Md ' 1.0 GeV



III. Normality (sanity) check

T. Iritani et al. (HAL QCD), PRD96 (2017)034521 (arXiv:1703.07210)

- A sign of the fake plateau II-

sanity -> normality sanity = consistency



The operator dependence is a sign of the fake plateau, but an extra work is 
required.  We need a simpler method to see a sign of the problem.

 Finite volume formula

�E = 2
q
k2 +m2

N � 2mN , q =
kL

2⇡
k cot �(k) =

1

⇡L

X

~n2Z3

1

~n2 � q2

unbound bound

Effective Range Expansion (ERE) k cot �(k) =
1

a
+

1

2

rk2 + · · ·

intercept

slo
pe

Finite volume test



Normality check
(i) Consistency: k cot �(k) must be consistent between k2 < 0 and k2 > 0.

a singular behavior requires a reasonable explanation.

(iii) physical pole condition: k cot �(k) must satisfy

d

d k2

h
k cot �(k)� (�

p
�k2)

i����
k2=�2

b

< 0

bound state condition

physical unphysical

It is necessary but not sufficient to pass the normality check.
Data may not be correct even if they pass the check.

(ii) non-singular behavior: k cot �(k) should be non-singular.



(ii)singular behaviors 

YIKU2012(PRD86(2012)074514)
m⇡ = 0.51 GeV, L = 2.9� 5.8 fm

We have already seen operator dependences on these data. 

smeared

smeared

Fake plateaux



Response by YIK2017 (arXiv:1710.08066 [hep-lat])

If data are distorted so badly by the finite lattice spacing/the finite volume, 
the result can not be regarded as the QCD prediction.

The infinite volume extrapolation even from almost volume independent data 
can not be trusted, if the finite volume formula is not applicable.

Our comments

 ``In the comparison between the expectation in the ideal case and the lattice data, there 
could be several sources of systematic errors, such as finite lattice spacing and finite 
volume effects, which may deform the two-nucleon interaction.”

``It is noted that even if there is a finite volume effect in             , which cannot be treated 
by the finite volume method [14 , 15 ], we consider that the signal of the existence of the 
bound state is meaningful  in our calculation, because we discuss the existence in the 
infinite volume limit, so that our result does not contain the finite volume effect.”

�ENN



Volume independence 
Claim by NPL (arXiv:1705.09239,1706.06550)

Volume independent plateaux should NOT be fake. 
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FIG. 7: A comparison of the SS EMPs of two-baryon channels at rest belonging to the four irreps, 27, 10,
10 and 8A, for the lowest-lying states (n = 1) in the lattice volumes L = 24 l.u. (dark magenta), L = 32 l.u.
(dark blue) and L = 48 l.u. (green) in the left panels, and for the second lowest-lying states (n = 2) in the
lattice volumes L = 24 l.u. (dark magenta) and L = 32 l.u. (dark blue) in the right panels. The points
from different volumes in the panels on the left have been slightly shifted in the time direction for display
purposes. The light-blue band corresponds to twice the mass of the baryon and its uncertainty in the 32

3⇥48

ensemble. Quantities are expressed in lattice units (l.u.).

is, if the systems do not exhibit bound ground states), such fake plateaus could only result from
cancellations between the FV states above the two-baryon threshold that contribute to the corre-
lation function with opposites signs, and whose contributions depend upon the source structures.
The spectrum of these states changes rapidly with power-law scaling as the volume is increased,
in contrast with an exponential scaling for a compact state. In order for the “mirage plateaus” to
be nearly coincident over the large range of volumes considered here, V = 39 – 300 fm

3, the linear
combination of states would also have to change very rapidly, and in a finely-tuned manner, in
order to keep the plateau regions approximately volume independent. As the employed sources are
volume independent and compact on the scale of all the spatial volumes, such behavior is exceed-
ingly unlikely. There is no indication that the values of the ground-state energies in the two-baryon

L = 48

L = 24

L = 32

2mN

NN(1S0)

NN(3S1)

Nf = 3, m⇡ ' 810 MeV, a ' 0.15 fm

(1) There is no theoretical argument to support this.
Our reply

(2) This argument assumes an existence of the bound state, which however needs 
to be confirmed. (assumption = conclusion.)
(3) Volume independent plateaux of YIKU2012 lead to singular behavior.



NPL2013 (PRC88(2013)024003) Nf = 3, m⇡ ' 810 MeV, a ' 0.15 fm

(iii) unphysical  (iii) unphysical  ?

CalLat2017 (PLB765(2017)285)

(iii) unphysical (iii) unphysical



correct analysis 

ERE line crosses the bound state condition twice.

unphysical
If data were correct, 

A similar problem in other channel.

NPL2017(arXiv:1706.06550)
k⇤2 [l.u.]
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483 ⇥ 64 : stat.+syst. 68% C.I.

Two-parameter ERE: stat.

Two-parameter ERE: stat.+syst.

Three-parameter ERE: stat.+syst.

Three-parameter ERE: stat.
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Response by NPL2017C(arXiv:1705.09239)

Data in NPL2013 pass the normality check.  

Our reply 1: ERE fit lines are different.



Our reply 2: Reanalysis was made without mention(arXiv: ver1).* 
Reanalysis was mentioned in footnote/caption (arXiv: ver2). **

NPL2013->NPL2017

NPL2013

NPL2017C

**After this workshop, reanalysis was mentioned in the main text (arXiv: ver3). 
*Reanalysis posted subsequently in 1706.06550. 



Our reply 3: Their ERE fits ignored correlations.17

FIG. 15. The ERE fitting in comment paper and Ref. [21].

The central value of this ERE has no 
intersection with the finite volume 
formula at L=24.

The �2
can not be calculated.Incorrect ERE fit

incorrect fitting no intersection

variance is ill-defined

satisfies Lüscher’s constraint(k2, k cot �)

ERE Fits with the finite volume constraint must be employed.

NPL2017C



Statement by Z. Davoudi (arXiv:1711.02020 [hep-lat])

``Nonetheless, these checks (some to be taken with more caution) are quite useful in 
establishing either the validity of LQCD determination of the finite-volume spectra or the 
assumptions made about the low-energy parametrization of the scattering amplitude in a 
given hadronic channel and given the values of the quark masses of the calculation.”

Our comments:
It is necessary but not sufficient to pass the normality check. 
Data may not be correct even if they pass the check. 
One therefore can not establish the validity.

``Consequently the conclusions presented in Ref. [56 ] concerning other studies must be 
fully examined before a definite statement can be made regarding the state of the results in 
literature for multi-nucleon systems.”

We would like to know the status of other studies than NPL2013.



NPL 2012 (PRD85(2012)054511) Nf = 2 + 1, m⇡ ' 390 MeV, as ' 0.12(aniso) fm

(ii)singular
(ii)regular ?

(ii)singular (ii)singular 
(iii)unphysical

L=20 data are outside of above figures (inconsistent)



NPL 2015 (PRD92(2012)114512)

(i)inconsistency or (iii) unphysical  pole

Nf = 2 + 1, m⇡ ' 450 MeV, a ' 0.12 fm



Chiral extrapolation[PRL115.132001] � = 6.1, a ' 0.11 fm, m⇡ ' 450, 806 MeV
3

FIG. 1: The double ratios of the two principal correlators
are shown for m⇡ ⇠ 450 MeV for the three magnetic field
strengths. The bands correspond to the single-exponential fits
to the correlator and the associated statistical uncertainty.

FIG. 2: LQCD calculations of the energy-splittings between
the two lowest-lying eigenstates, with the single-nucleon con-
tributions removed, as a function of ñ, along with the asso-
ciated fits. The lower (blue) set of points correspond to the
m⇡ ⇠ 450 MeV ensemble and the upper (green) points to
m⇡ ⇠ 806 MeV. The slope of the sets of points is propor-
tional to L

1

at the appropriate pion mass.

erators associated with 3

S

1

and 1

S

0

I

z

= j

z

= 0 interpo-
lating operators

C(t;B) =

 
C

3
S1,

3
S1(t;B) C

3
S1,

1
S0(t;B)

C

1
S0,

3
S1(t;B) C

1
S0,

1
S0(t;B)

!
, (5)

is diagonalized to yield “principal correlators”, �±(t;B),
corresponding to the eigenstates of the coupled sys-
tem. In all cases, the principal correlators exhibit single-
exponential behavior at times where statistical uncertain-
ties are manageable. To highlight the di↵erence arising
from purely two-body e↵ects, a ratio of ratios of the prin-
cipal correlators to the appropriate single particle corre-
lation functions is formed

�R

3
S1,

1
S0
(t;B) =

�

+

(t;B)

��(t;B)

C

n,"(t;B)C
p,#(t;B)

C

n,#(t;B)C
p,"(t;B)

, (6)
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]

FIG. 3: The results of LQCD calculations of L
1

(blue
points). The blue (green) shaded regions point show the lin-
ear (quadratic) in m⇡ extrapolation of L

1

to the physical pion
mass (dashed line) in natural nuclear magnetons (nNM). The
vertical (red) line indicates the physical pion mass.

where C

p/n,"/#(t;B) are the correlation functions corre-
sponding to the di↵erent polarizations of the proton and
neutron. For large time separations,

�R

3
S1,

1
S0
(t ! 1;B) ! A e

��E3
S1,

1
S0

(B)t

, (7)

where A is an overlap factor and the energy shift is

�E

3
S1,

1
S0

⌘ �E

3
S1,

1
S0

� [E
p," � E

p,#] + [E
n," � E

n,#]

! 2L
1

|eB|/M +O(B2) , (8)

omitting the B dependence for clarity. Fig. 1 shows
the above ratios for the m

⇡

⇠ 450 MeV ensemble for
each magnetic field strength, along with correlated single-
exponential fits to the time dependence and their statisti-
cal uncertainties. The energies extracted from these fits
depend on |B|, with 2 e

M

L

1

being the coe�cient of the
linear term. Fig. 2 shows the extracted energy shifts for
both the m

⇡

⇠ 450 MeV and 806 MeV ensembles. The
figure also shows the envelopes of a large range of poly-
nomial fits to their magnetic field dependence. Ref. [35]
presents the m

⇡

⇠ 806 MeV correlation functions in de-
tail, and has a complete discussion of the fitting methods
used in the analysis for both sets of pion masses.
The extracted values of L

1

are shown in Fig. 3 for both
sets of quark masses. The functional dependence of L

1

on the light-quark masses is not known. However, the
deuteron and dineutron remain relatively near threshold
over a large range of quark masses [33, 52–55], and the
magnetic moments of the nucleons are essentially inde-
pendent of the quark masses when expressed in units of
natural nuclear magnetons [40], so it is plausible that
L

1

also varies only slowly with the pion mass. Indeed,
there is only a small di↵erence in the value of L

1

at
m

⇡

⇠ 806 MeV and at m

⇡

⇠ 450 MeV. In order to
connect to the physical point, we extrapolate both lin-
early and quadratically in the pion mass by resampling

Chiral & continuum extrapolations 
[PRD95.114513]

a) m⇡ ' 806 MeV, � = 6.1, a ' 0.15 fm
b) m⇡ ' 767 MeV, � = 6.3, a ' 0.10 fm
c) m⇡ ' 450 MeV, � = 6.1, a ' 0.12 fm

8

!-"!-"

Σ -Σ-Σ -Σ-

Ξ!-Ξ-Ξ!-Ξ-

(!"#)! ($#%)! (&%')!
-2

-1

0

1

2

3

4

!π
! ["#$!]

δμ
!
[!
"#

]

!+"!+"

Σ++Σ-Σ++Σ-

Ξ!+Ξ-Ξ!+Ξ-

(!"#)! ($#%)! (&%')!

-2

-1

0

1

2

!π
! ["#$!]

δμ
!
[!
"#

]

FIG. 3. Quadratic pion-mass extrapolation of the anoma-
lous part of the isovector and isoscalar magnetic moments
from Ensembles I and III in [nBM]. Isovector magnetic mo-
ments are free of quark-disconnected contributions; subtract-
ing the Dirac part does not change this because it arises solely
from valence quarks. With SU(3)F breaking, the isoscalar
moments on Ensemble III require disconnected contributions
that have not been determined. Removing the Dirac part,
moreover, makes the resulting moments more sensitive to
these missing contributions. The shorthand µA±B ⌘ µA±µB

for sums and di↵erences of the baryon magnetic moments is
used. Experimental values are given in [BM], and have not
been included in any of these fits.

that the extracted magnetic moments from Ensemble II
have statistical uncertainties which are 2–4 times larger
than those from Ensemble I. This scaling is consistent
with the di↵ering sizes of the ensembles.

While the fermion action has only been perturbatively
improved, with corrections näıvely scaling as O(↵2

s

a), the
value of the clover coe�cient with tadpole improvement
is consistent with that obtained from non-perturbative
O(a) improvement, e↵ectively leaving O(a2) uncertain-
ties. Because the vector current is implemented through
the link fields, Eq. (1), it inherits the same level of dis-
cretization e↵ects. Thus the magnetic moments are as-
sumed to have quadratic dependence on the lattice spac-
ing near the continuum limit, of the form

�µ
B

(a) = �µ
B

(0) + C
B

a2. (11)

TABLE IV. Lattice-spacing dependence of baryon anomalous
magnetic moments, �µB , determined in [nBM], Eq. (7), at a
pion mass of m⇡ ⇠ 800 MeV. The first uncertainty quoted is
statistical; the second is systematic, while the uncertainty on
the extrapolated values combines the statistical and system-
atic uncertainties in quadrature.

�µB [nBM]

I II Extrapolation

p,⌃+ 2.052(14)(34) 1.86(07)(13) 1.67(34)

n,⌅0 �1.982(03)(19) �1.840(10)(19) �1.705(76)

⌃�,⌅� �0.136(14)(32) �0.056(28)(67) �0.02(19)

Results of continuum extrapolations using Eq. (11) are
given in Table IV, and shown in Fig. 4. With the
Dirac contributions removed, the anomalous magnetic
moments should be more sensitive to the lattice spacing,
but it is found that the continuum extrapolated values for
the charged baryons are consistent with those computed
on the coarse ensemble.

The magnetic moment of the U -spin triplet contain-
ing the neutron and ⌅0 exhibits the strongest lattice-
spacing dependence in absolute terms. The di↵erence
between magnetic moments on the coarse ensemble and
the continuum-extrapolated value is relatively large and
the coarse result is more than 3� from the extrapolated
result. The anomalous magnetic moment of the U -spin
doublet consisting of ⌃� and ⌅� baryons, however, ex-
hibits the greatest relative change because the values are
quite small and the extrapolated result is consistent with
zero. This is surprising and suggests that the deviation
from point-like magnetic moments computed on Ensem-
bles I and II could just be a lattice-spacing artifact. Bet-
ter statistics and computations at an additional lattice
spacing are needed to support this conclusion. It would
additionally be interesting to compute the magnetic form
factors of these baryons, in order to understand the dis-
tributions of charged currents that ultimately give rise
to magnetic moments that are close to those of point-like
particles.

IV. MAGNETIC MOMENT RELATIONS

The curious pattern of baryon anomalous magnetic
moments exhibited in Fig. 2 motivates further investi-
gation of the relations between them. An examination of
the deviations from the Coleman-Glashow relations leads
us to consider relations between the magnetic moments
that hold in the NRQM and/or in the large-N

c

limit of
QCD, and deviations therefrom.
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FIG. 3. Quadratic pion-mass extrapolation of the anoma-
lous part of the isovector and isoscalar magnetic moments
from Ensembles I and III in [nBM]. Isovector magnetic mo-
ments are free of quark-disconnected contributions; subtract-
ing the Dirac part does not change this because it arises solely
from valence quarks. With SU(3)F breaking, the isoscalar
moments on Ensemble III require disconnected contributions
that have not been determined. Removing the Dirac part,
moreover, makes the resulting moments more sensitive to
these missing contributions. The shorthand µA±B ⌘ µA±µB

for sums and di↵erences of the baryon magnetic moments is
used. Experimental values are given in [BM], and have not
been included in any of these fits.

that the extracted magnetic moments from Ensemble II
have statistical uncertainties which are 2–4 times larger
than those from Ensemble I. This scaling is consistent
with the di↵ering sizes of the ensembles.

While the fermion action has only been perturbatively
improved, with corrections näıvely scaling as O(↵2

s

a), the
value of the clover coe�cient with tadpole improvement
is consistent with that obtained from non-perturbative
O(a) improvement, e↵ectively leaving O(a2) uncertain-
ties. Because the vector current is implemented through
the link fields, Eq. (1), it inherits the same level of dis-
cretization e↵ects. Thus the magnetic moments are as-
sumed to have quadratic dependence on the lattice spac-
ing near the continuum limit, of the form

�µ
B

(a) = �µ
B

(0) + C
B

a2. (11)

TABLE IV. Lattice-spacing dependence of baryon anomalous
magnetic moments, �µB , determined in [nBM], Eq. (7), at a
pion mass of m⇡ ⇠ 800 MeV. The first uncertainty quoted is
statistical; the second is systematic, while the uncertainty on
the extrapolated values combines the statistical and system-
atic uncertainties in quadrature.

�µB [nBM]

I II Extrapolation

p,⌃+ 2.052(14)(34) 1.86(07)(13) 1.67(34)

n,⌅0 �1.982(03)(19) �1.840(10)(19) �1.705(76)

⌃�,⌅� �0.136(14)(32) �0.056(28)(67) �0.02(19)

Results of continuum extrapolations using Eq. (11) are
given in Table IV, and shown in Fig. 4. With the
Dirac contributions removed, the anomalous magnetic
moments should be more sensitive to the lattice spacing,
but it is found that the continuum extrapolated values for
the charged baryons are consistent with those computed
on the coarse ensemble.

The magnetic moment of the U -spin triplet contain-
ing the neutron and ⌅0 exhibits the strongest lattice-
spacing dependence in absolute terms. The di↵erence
between magnetic moments on the coarse ensemble and
the continuum-extrapolated value is relatively large and
the coarse result is more than 3� from the extrapolated
result. The anomalous magnetic moment of the U -spin
doublet consisting of ⌃� and ⌅� baryons, however, ex-
hibits the greatest relative change because the values are
quite small and the extrapolated result is consistent with
zero. This is surprising and suggests that the deviation
from point-like magnetic moments computed on Ensem-
bles I and II could just be a lattice-spacing artifact. Bet-
ter statistics and computations at an additional lattice
spacing are needed to support this conclusion. It would
additionally be interesting to compute the magnetic form
factors of these baryons, in order to understand the dis-
tributions of charged currents that ultimately give rise
to magnetic moments that are close to those of point-like
particles.

IV. MAGNETIC MOMENT RELATIONS

The curious pattern of baryon anomalous magnetic
moments exhibited in Fig. 2 motivates further investi-
gation of the relations between them. An examination of
the deviations from the Coleman-Glashow relations leads
us to consider relations between the magnetic moments
that hold in the NRQM and/or in the large-N

c

limit of
QCD, and deviations therefrom.
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FIG. 4. Illustration of the lattice-spacing dependence of
baryon anomalous magnetic moments from Table IV.

A. SU(3)F Symmetry and the Coleman-Glashow
Relations

In the limit of SU(3)
F

symmetry, the lightest spin-half
baryons form an octet, where the states are convention-
ally embedded as

B
i

j =

0

BB@

1

p

2

⌃0 + 1

p

6

⇤ ⌃+ p

⌃� � 1

p

2

⌃0 + 1

p

6

⇤ n

⌅� ⌅0 � 2

p

6

⇤

1

CCA

j

i

, (12)

which transforms as B ! V BV † under a transformation
parametrized by V 2 SU(3)

F

. Electromagnetic interac-
tions break the SU(3)

F

symmetry due to the di↵erent
quark electric charges, which appear in the matrix

Q
i

j = diag

✓
2

3
,�1

3
,�1

3

◆
j

i

. (13)

As a result, the baryon magnetic moment operators,
which contain one insertion of Q, are not SU(3)

F

invari-
ant. Such symmetry breaking is most easily accounted
for by promoting the charge matrix to a spurion field
transforming as Q ! V QV †, forming invariant opera-
tors using this field, and then allowing Q to pick up the
value in Eq. (13).

With SU(3)
F

symmetry there are only two indepen-
dent magnetic moment operators in the Hamiltonian den-
sity

H = �e� ·B
2M

B

h
µ
D

⌦
B{Q,B}

↵
+ µ

F

⌦
B[Q,B]

↵ i
, (14)

where the angled brackets denote the trace over SU(3)
F

indices, namely hAi ⌘ A
i

i. For the six octet baryons
with I

3

6= 0, there are four relations between their mag-
netic moments resulting from this Hamiltonian density.
The remaining two baryons with I

3

= 0 will be discussed
in Sec. V. Magnetic moment relations which emerge from
Eq. (14) were first obtained by Coleman and Glashow [6],

TABLE V. The sums and di↵erences of magnetic moments
in units of [nNM] and [nBM] that vanish in the SU(3)F -
symmetric limit. The first uncertainty is statistical, while
the second is systematic. The abbreviation “C-P” indicates
the sum of the six baryon magnetic moments in Eq. (17).

µB [nNM] µB [NM]

I III Experiment

p� ⌃+ 0 0.081(15)(34) 0.33(1)

⌅0 � n 0 0.264(10)(41) 0.663(14)

⌅� � ⌃� 0 0.274(20)(42) 0.509(26)

p+ n+ ⌃� �0.065(20)(49) �0.112(29)(72) �0.280(25)

C-P �0.065(20)(49) 0.116(22)(54) 0.139(26)

µB [nBM] µB [BM]

I III Experiment

p� ⌃+ 0 �0.192(15)(34) �0.323(13)

⌅0 � n 0 0.014(11)(43) 0.164(20)

⌅� � ⌃� 0 0.255(23)(47) 0.564(35)

p+ n+ ⌃� �0.065(20)(49) �0.219(31)(74) �0.603(32)

C-P �0.065(20)(49) 0.011(24)(58) �0.078(34)

and should describe exactly the LQCD results obtained
on the SU(3)

F

-symmetric ensembles. From Eq. (14),
there are three U -spin symmetry relations, see Eq. (3),
which dictate the equalities

µ
p

= µ
⌃

+ , µ
n

= µ
⌅

0 , and µ
⌃

� = µ
⌅

� . (15)

The correlation functions from which these moments are
extracted satisfy analogous relations configuration-by-
configuration on Ensembles I and II. Additionally, there
is the non-trivial constraint

µ
p

+ µ
n

+ µ
⌃

� = 0, (16)

that emerges on Ensembles I and II after averaging over
gauge configurations and is a useful check of the lattice
results. As there is additional SU(3)

F

breaking due to
quark mass di↵erences on Ensemble III, as well as in
nature, we investigate the size of deviations from the
Coleman-Glashow relations by computing sums and dif-
ferences of magnetic moments that vanish in the SU(3)

F

-
symmetric limit. Results are tabulated in Table V.

The Coleman-Glashow relations obviously also emerge
in the SU(3)

L

⇥SU(3)
R

chiral limit in which m
u

= m
d

=
m

s

= 0, with corrections occurring at next-to-leading or-
der (NLO) in the chiral expansion. Such NLO corrections
can be eliminated in forming the smaller set of so-called
Caldi-Pagels relations [10]. Of interest here is the sum of
all six I

3

6= 0 baryon magnetic moments

µ
C-P

⌘ 1

2

h
µ
p

+ µ
n

+ µ
⌃

+ + µ
⌃

� + µ
⌅

0 + µ
⌅

�

i
. (17)

This sum vanishes up to next-to-next-to-leading order
(NNLO) corrections in the chiral expansion, which scale



The plateau is not enough 
for multi-baryon systems.

Conclusion

The GEVP is called for.


