INT 18-3 program

Week II -TMDs and Transverse Spin

H. Avakian A. Bacchetta D. Boer Z. Kang

Main Goal

Update and extend TMD section of "Yellow Report" arXiv:1108.1713 and "White Paper" arXiv:1212.1701

Main Goal

Update and extend TMD section of "Yellow Report" arXiv:1108.1713 and "White Paper" arXiv:1212.1701

arXiv:1108.1713	2	Fhree-dimensional structure of the proton and nuclei: transverse			
		momentum			
		2.1 Introduction and chapter summary	84		
		2.2 Sivers function	95		
		2.3 Transverse polarization effects with gluons	120		
		2.4 Theory highlights	125		
		2.5 Chiral-odd partonic densities	138		
		2.6 Overview on other TMDs	149		

Main Goal

Update and extend TMD section of "Yellow Report" arXiv:1108.1713 and "White Paper" arXiv:1212.1701

arXiv:1108.1713	2	2 Three-dimensional structure of the proton and nuclei: transverse				
		momentum				
		2.1 In	roduction and chapter summary	84		
		2.2 Si	rers function	95		
		2.3 Tr	ansverse polarization effects with gluons	120		
		2.4 Th	eory highlights	125		
		2.5 Cł	iral-odd partonic densities	138		
		2.6 Or	rerview on other TMDs	149		
arXiv:1212.1701	2	2.3 Con	fined Motion of Partons in Nucleons: TMDs	33		
		2.3.1	Introduction	33		
		2.3.2	2 Opportunities for Measurements of TMDs at the EIC	35		
			Semi-inclusive Deep Inelastic Scattering	36		
			Access to the Gluon TMDs	40		
		2.3.3	Summary	41		

TMD "science matrix"

	Deliverables	Observables	What we learn
XXXI Olimptada Rio 2016	Sivers &	SIDIS with	Quantum interference & spin-orbital correlations
	unpolarized	transverse	3D Imaging of quark's motion: valence $+$ sea
	TMD quarks	polarization;	3D Imaging of gluon's motion
	and gluon	di-hadron (di-jet)	QCD dynamics in an unprecedented Q^2 (P_{hT}) range
XXXI Olimplada Rio 2016	Chiral-odd	SIDIS with	3rd basic quark PDF: valence + sea, tensor charge
000	functions:	transverse	Novel spin-dependent hadronization effect
	transversity;	polarization	QCD dynamics in a chiral-odd sector
Centra	Boer-Mulders		with a wide $Q^2(P_{hT})$ coverage

p. 94 of arXiv:1108.1713 and p. 41 of arXiv:1212.1701

TMD motivation from "White Paper"

- 3D-imaging. The TMDs represent the intrinsic motion of partons inside the nucleon (confined motion!) and allow reconstruction of the nucleon structure in momentum space. Such information, when combined with the analogous information on the parton spatial distribution from GPDs, leads to a 3-dimensional imaging of the nucleon.
- Orbital motion. Most TMDs would vanish in the absence of parton orbital angular momentum, and thus enable us to quantify the amount of orbital motion.
- Spin-orbit correlations. Most TMDs and related observables are due to couplings of the transverse momentum of quarks with the spin of the nucleon (or the quark). Spin-orbit correlations in QCD, akin to those in hydrogen atoms and topological insulators, can therefore be studied.
- Gauge invariance and universality. The origin of some TMDs and related spin asymmetries, at the partonic level, depend on fundamental properties of QCD, such as its color gauge invariance. This leads to clear differences between TMDs in different processes, which can be experimentally tested.

TMD motivation from "White Paper"

- 3D-imaging. The TMDs represent the intrinsic motion of partons inside the nucleon (confined motion!) and allow reconstruction of the nucleon structure in momentum space. Such information, when combined with the analogous information on the parton spatial distribution from GPDs, leads to a 3-dimensional imaging of the nucleon.
- Orbital motion. Most TMDs would vanish in the absence of parton orbital angular momentum, and thus enable us to quantify the amount of orbital motion.
- Spin-orbit correlations. Most TMDs and related observables are due to couplings of the transverse momentum of quarks with the spin of the nucleon (or the quark). Spin-orbit correlations in QCD, akin to those in hydrogen atoms and topological insulators, can therefore be studied.
- Gauge invariance and universality. The origin of some TMDs and related spin asymmetries, at the partonic level, depend on fundamental properties of QCD, such as its color gauge invariance. This leads to clear differences between TMDs in different processes, which can be experimentally tested.

Can we make it even more appealing?

Unpolarized quark TMD phenomenology

- Unpolarized quark TMD phenomenology
- Sivers TMD phenomenology

- Unpolarized quark TMD phenomenology
- Sivers TMD phenomenology
- Transversity and Collins function phenomenology

- Unpolarized quark TMD phenomenology
- Sivers TMD phenomenology
- Transversity and Collins function phenomenology
- Gluon TMDs unpolarized + polarised

- Unpolarized quark TMD phenomenology
- Sivers TMD phenomenology
- Transversity and Collins function phenomenology
- Gluon TMDs unpolarized + polarised
- * Jet TMDs (hadron-in-jet, photon-jet, jet-jet...)

- Unpolarized quark TMD phenomenology
- Sivers TMD phenomenology
- Transversity and Collins function phenomenology
- Gluon TMDs unpolarized + polarised
- * Jet TMDs (hadron-in-jet, photon-jet, jet-jet...)
- Higher twist

Connections with other weeks

- * GPDs
- Low-x physics
- Nuclear modifications

Connections with other topics

- Lattice QCD
- Precision computations in jet physics
- * Search for physics Beyond the Standard Model

Open questions

* Where can we trust the formalism?

**

- How much do we need to know about TMD Fragmentation Functions?
- * How much do we need from other experiments?
- * How good is the status of gluon TMD theoretical framework?

Suggestions/requests

- * Talks should be 30 min. + 10 min. discussion
- Please, keep focus on EIC physics
- * Feel free to ask questions during the talk
- * "Brainstorming" is encouraged
- * At some point, let's be as concrete as possible
- * We will collect proceedings from all of you