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Introduction

The Electron-Ion-Collider (EIC) goals:

Gluon distributions, small-x physics

Sea quark distributions

Gluon spin, parton orbital angular momentum

3-D tomography of the nucleon. TMDs, GPDs, Wigner distributions (or
GTMDs).

......

Lattice QCD calculation of EIC physics is both timely and necessary:

Kinematic regions and flavor structures not available at experiments;

Useful information for global analysis of less known quantities, such as
transversity PDFs, TMDs, GPDs, Wigner distributions, etc;

Interplay between theory and experiment in the EIC era.
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Parton physics from large-momentum effective theory

Large-momentum effective theory (LaMET) is a systematic approach
to calculate parton physics on the light-cone from lattice QCD 1:

Parton physics is related to (correlation) operators on the
light-cone whose matrix elements cannot be directly calculated on
a Euclidean lattice;

LaMET relates a designed time-independent (or equal-time)
quasi-observable in a large-momentum nucleon state to the desired
parton observable through a factorization formula where the
momentum is the large scale in the power counting;

The quasi-observable can be directly calculated on the lattice, and
LaMET is used to extract the parton observable from it.

1Ji, PRL 2013, Sci. China Phys. Mech. Astro., 2014
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Example: Collinear PDFs

Unpolarized quark PDF:

qi(x, µ) ≡
∫
dξ−

4π
e−ixP

+ξ−〈P
∣∣ψ̄i(ξ−)γ+W (ξ−, 0)ψi(0)

∣∣P
〉
,

W (ξ−, 0) = P exp

(
− ig

∫ ξ−

0

dη−A+(η−)

)
.

Unpolarized quark quasi-PDF:

q̃i(x, P
z, a−1) ≡

∫
dz

4π
eixP

zz〈P
∣∣ψ̄i(z)ΓWz(z, 0)ψi(0)

∣∣P
〉
,

Wz(z, 0) = P exp

(
ig

∫ z

0

dz′Az(z′)

)
,

Γ = γt or γz .

z

t

nn̄

bz−bz

γb z
n̄

γb z
n̄
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Systematic procedure to calculate the PDF

Factorization formula:

q̃Xi (x, P z, µ̃) =

∫ +1

−1

dy

|y| C
X
ij

(
x

y
,
µ̃

µ
,

µ

|y|P z
)
qj(y, µ) +O

(
M2

P 2
z

,
Λ2

QCD

P 2
z

)
,

Procedure of calculation:

1 (Nonperturbative) renormalization of the lattice matrix element in
a particular scheme “X” 2;

2 Continuum (and infinite volume) limit;

3 Subtraction of mass corrections and higher-twist corrections 3;

4 Perturbative matching to obtain the PDF 4.

2Lin et al. (LP3), PRD 2017; Alexandrou et al. (ETMC), NPB 2017.
3Chen et al. (LP3), NPB 2016
4Xiong, Ji, Zhang and Y.Z., PRD 2014; I. Stewart and Y.Z., PRD 2017; Y.-S. Liu et al.

(LP3), 2018.
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Prominent applications

Gluon helicity contribution to the proton spin 5

Unpolarized iso-vector quark PDF of proton 6

Iso-vector quark helicity PDF of proton

Iso-vector quark transversity PDF of proton

Meson distribution amplitudes of proton

Iso-vector quark PDF of pion

5Y.-B. Yang et al.(χQCD), PRL 2017.
6See works by LP3, ETMC collaborations.
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Iso-vector quark helicity PDF of proton

results, since there is no known functional form for the P3

dependence for the infinite momentum limit extrapolation.
The interplay between real and imaginary parts of

renormalized matrix elements leads to unphysical oscil-
lations in quasi-PDFs, resulting from the periodicity of the
Fourier transform, and propagated through the matching
procedure to light-cone PDFs. The effect is naturally
suppressed for large nucleon boosts, when matrix elements
decay to zero fast enough, before the term e−ixP3z of Eq. (1)
can lead to negative results. For the currently attained
momenta, the decay of renormalized matrix elements is still
relatively slow, which manifests itself in distorting the
approach of the PDFs to zero for x≳ 0.5 and in reaching an
unphysical minimum in the antiquark part, for x ≈ −0.2.
The oscillations, as expected, are smoothened out as the
momentum increases (which is visible particularly at the
level of quasi-PDFs) and are more severe in the antiquark
region. Nevertheless, this is the first time when clear
convergence towards phenomenological PDFs (and partly
even agreement with them) is demonstrated with simula-
tions using a physical pion mass value. Clearly, momentum
6π=L is not high enough to reconstruct light-cone PDFs.
However, we do observe a qualitatively similar behavior
between the LQCD data at the largest momentum and the
phenomenological results, with some overlap in the small-x
region. The slope of the two curves is compatible for the
positive-x region, and both curves go to zero for x≲ −0.4
and x≳ 1.
In Fig. 3, we present the polarized PDFs for our three

values of the momentum, together with DSSV08 [58],
NNPDF1.1pol [59], and JAM17 [60] data. We find a milder
dependence on the nucleon momentum, and, for the third
largest momentum, the results are closer to phenomeno-
logical curves with significant overlap with them for
0 < x < 0.5. For the region 0.5 < x < 1, the slope of
the lattice QCD curves changes, possibly due to the

oscillations mentioned above, but they still approach zero
around x ¼ 1. For the negative-x region, the lattice QCD
curves also approach zero, with a dip at small x and large
uncertainties, which is another consequence of oscillations.
Given that the lattice QCD results are extracted without
any assumptions on the functional form, unlike what is
done in phenomenological fits, this qualitative agreement is
very promising. We note that after eliminating the problem
of oscillations and addressing possible higher-twist con-
tamination, the large-x region is expected to be the most
reliable, since the access to the very small-x region is
limited by the lattice size.
Finally, we discuss the role of having simulations with

physical pions. In Fig. 4, we compare phenomenological
curves with results from Ref. [27] obtained using an
ensemble with mπ ≈ 375 MeV and volume 323 × 64,
referred to as the B55 ensemble. As P3 increases, the
results from this ensemble reach a universal curve.
However, they are clearly different from the phenomeno-
logical curves. When we compare the curves from the B55
ensemble to those obtained using the ensemble of this
Letter, both at momentum ∼1.4 GeV, we observe a clear
pion mass dependence. This is compatible with the pion
mass dependence seen in the isovector quark momentum
fraction hxiu−d computed within LQCD. For ensembles at
heavier than physical pion masses, hxiu−d is larger [61],
which corresponds to a shift of the curve of the PDF to
larger values of x, as indeed observed in the B55 data.
Conclusions and prospects.—In this Letter, we extracted

PDFs from lattice QCD simulations, a task that was
considered one of the most important aims of lattice hadron
structure computations and yet practically unfeasible only a
few years ago. The steps addressed in order to achieve this
task comprise significant conceptual developments, such as
nonperturbative renormalization, target mass corrections,
matching, and the development of a lattice technique,
momentum smearing, that enables computations for large

FIG. 2. Comparison of unpolarized PDF at momenta 6π=L
(green band), 8π=L (red band), and 10π=L (blue band). The
results from the phenomenological analysis of ABMP16 [56]
(NNLO), NNPDF [57] (NNLO), and CJ15 [55] (NLO) are
displayed for illustrative purposes. Logarithmic scale is used
in the x axis (down to jxj ¼ 0.035) for better visibility.

FIG. 3. Comparison of polarized PDF at momenta 6π=L (green
band), 8π=L (red band), and 10π=L (blue band), DSSV08 [58],
NNPDF1.1pol [59], and JAM17 NLO phenomenological data
[60]. Logarithmic scale is used in the x axis (down to jxj ¼ 0.035)
for better visibility.
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C. Alexandrou, K. Cichy, M.
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Clover valence fermions on Nf=2+1+1

flavors of HISQ generated by MILC,

a=0.09fm, L=5.8fm, mπ ∼135 MeV,

P z=3.0 GeV, µ=3.0 GeV.
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Iso-vector quark transversity PDF of proton

4

The plus prescriptions in Eq. (5) are all at ⇠=1. The
contributions outside the physical region in Eq. (5)
have their origin exclusively in the one-loop correc-
tion to quasi-PDF. Conversely, quasi-PDFs are UV fi-
nite inside the physical region. Thus, unlike light-
cone PDF, the UV divergence in quasi-PDF appears
when integrating the momentum fraction in the one-
loop wave-function correction to ±1. These divergences,
which behave as �2/⇠ (⇠>1)and �2/(1�⇠) (⇠<0), have
been subtracted in Eq. (5). From the Ward identity,
the integrated one-loop vertex correction is renormal-
ized by the same terms. This ensures that the norm
of the distributions is automatically preserved by the

matching, i.e.
R1
�1 dx h1(x, µ)=

R1
�1 dxeh1(x, µ, P3), andR1

�1 d⇠ �C(⇠, ⇠µ
xP3

)=1 that holds for every value of P3.
Because particle number conservation is built inside the
matching, the finite limits of integration imposed by the
lattice data also conserve the norm.

Final Results: A combination of the renormalization,
matching procedure and application of the TMCs allow
the reconstruction of light-cone PDFs, which we present
in this section. In Fig. 2, we show the e↵ect of each
step of this procedure for P= 10⇡

L , i.e. we start with the

renormalized quasi-PDF (ehu�d
1 ), apply matching (h0

1
u�d

)

and finally include TMCs (hu�d
1 ), which leads to the fi-

nal estimate of the transversity PDF. As can be seen,
application of the matching shifts the peak of the distri-
bution towards x=0 and increases it, as expected. We
also find that TMCs are small, but non-negligible, and
mostly a↵ect the small-x region.

-1 -0.5 0 0.5 1

0

2

4

FIG. 2: Renormalized quasi-PDF, ehu�d
1 (green), PDF after

matching, h0
1

u�d
(orange) and after TMCs, hu�d

1 (blue), as a
function of Bjorken-x for P= 10⇡

L
.

Our final results are shown in Fig. 3 at a scale of
p

2

GeV (hu�d,lattice
1 ). For clarity we only show P= 10⇡

L ,
as the dependence on the nucleon momentum is small
for most regions of x. We find that for the large and
positive x region, the data at momentum P= 10⇡

L have

milder oscillatory behavior, an e↵ect that originates from
the use of finite momentum. As can bee seen in the
plot, hu�d,lattice

1 in the large negative-x nicely approach
zero. For demonstration purposes, we include in the
same plot phenomenological fits on SIDIS data [21], as
well as SIDIS data constrained using lattice estimates of
gT (“SIDIS+lattice”) [21]. The statistical uncertainties
of the lattice PDFs are strikingly smaller than the phe-
nomenological fits of the SIDIS data. This also holds for
the “SIDIS+lattice” data that have much smaller uncer-
tainties than the unconstrained SIDIS values. The com-
parison favors the direct extraction of the transversity
PDF using the quasi-PDFs method, in terms of uncer-
tainties and reliability in the extraction. Using the data
at P= 10⇡

L , we obtain gT =1.10(34) by integrating over
x within the interval [�1, 1]. This value can be com-
pared with the renormalized Mh1

(P, 0) that gives a value
gT =1.09(11), which is compatible with the aforemen-
tioned integration and with the extraction in Ref. [63].

-1 -0.5 0 0.5 1

0

2

4

FIG. 3: Transversity PDF for P= 10⇡
L

(blue) as a function
of Bjorken-x. The phenomenological fits have been obtained
using SIDIS data (grey) [21] and SIDIS data constrained using
glattice

T (purple) [21].

Summary and Prospects: This paper presents a state-of-
the-art direct calculation of the transversity PDF for the
isovector flavor combination. The novelty of this work is
the improvement of the computation in all fronts, that
is, simulations at physical quark masses [45, 64], employ-
ment of a non-perturbative renormalization program [55],
and application of a cut-o↵ independent and renormal-
ized matching between quasi-PDFs and light-cone PDFs;
the latter was developed in this work.

A number of careful investigations have been per-
formed to study systematic uncertainties. We find that
excited states are suppressed for a source-sink separa-
tion of 1.12 fm and nucleon momentum up to 1.4 GeV.
The twisted mass formulation has the advantage of auto-
matic O(a)-improvement, and calculation of the disper-
sion relation indicates small cut-o↵ e↵ects. Another in-
vestigation is the extraction of the tensor charge found to

C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, and F. Steffens,
(ETMC), 1807.00232

Dynamical Nf=2+1+1 twisted mass fermions, a=0.09fm, L=4.5fm, mπ ∼130 MeV,

P z=1.4 GeV, µ =
√

2 GeV.
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GPD and quasi-GPD

Unpolarized GPD:

Fi(x, ξ, t, µ) ≡
∫
dξ−

4π
e−ixP̄

+ξ−〈P ′
∣∣ψ̄i(ξ

−

2
)γ+W

(
ξ−

2
,−ξ

−

2

)
ψi(−

ξ−

2
)
∣∣P
〉
,

ξ ≡ −P
′+ − P+

P ′+ + P+
, t = ∆2 ≡ (P ′ − P )2, P̄ =

P + P ′

2
.

Unpolarized quasi-GPD:

F̃i(x, P̄
z, ξ̃, t, a−1) ≡

∫
dz

4π
eixP̄

zz〈P ′
∣∣ψ̄i(z

2
)ΓWz

(z
2
,−z

2

)
ψi(−

z

2
)
∣∣P
〉
,

ξ̃ = −P
′z − P z

P ′z + P z
≈ −P

′+ − P+

P ′+ + P+
= ξ ,

Γ = γt or γz .
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Factorization formula for the quasi-GPD?

Similar to the quasi-PDF, one can anticipate that the factorization
formula takes the form,

F̃Xi (x, P̄ z, ξ, t, µ̃)

=

∫ +1

−1

dy

|y| C
X
ij

(
x

y
,
ξ

y
,
µ̃

µ
,

µ

|y|P̄ z
)
Fj(y, ξ, t, µ) +O

(
M2

P 2
z

,
Λ2

QCD

P 2
z

)
,

The one-loop matching coefficient was calculated for bare
quasi-GPD and GPD in a transverse-momentum cutoff
regularization scheme 7;

Rigorous derivation of the factorization formula not done yet, and
it is nontrivial to determine the dependence of CX on ξ and yP̄ z 8;

Transverse-momentum cutoff regularization scheme is not suitable
for nonperturbative renormalization on the lattice.

7Ji, Schäfer, Xiong and Zhang, PRD 2015
8Izubuchi, Ji, Jin, Stewart and Zhao, PRD 2018.
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Derivation of the factorization formula with operator
product expansion

Consider the nonlocal bilinear operator that defines the quasi-PDF and
quasi-GPD,

ÕΓ(z) = ψ̄(
z

2
)ΓWz

(z
2
,−z

2

)
ψ(−z

2
) ,

In coordinate space, ÕΓ(z) can be multiplicatively renormalized 9

ÕΓ(z, µ) = Zψ,z e
δm|z|ÕΓ(z, ε) .

δm subtracts the linear power divergences (if it exist);

Zψ,z renormalizes the logarithmic divergences.

9Ji, Zhang and Zhao, PRL 2018; Ishikawa, Ma, Qiu and Yoshida, PRD 2017;
Green, Jansen and Steffens, PRL 2018.
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Derivation of the factorization formula for quasi-GPD

Operator product expansion (OPE) of ÕΓ(z, µ) (in the MS scheme) in
the limit of |z| → 0:

Õe·γ(z, µ) =
∞∑

n=0

[
Cn(µ2z2)

(−iz)n
n!

eµ1
· · · eµnOµ0µ1···µn

1 (µ)

+C ′n(µ2z2)
(−iz)n
n!

eµ1 · · · eµnOµ0µ1···µn
2 (µ) + higher-twist operators

]
,

where eµ = (0, 0, 0, 1), and the local twist-two operators are

Oµ0µ1...µn
1 (µ) =Zqqn+1ψ̄γ

{µ0iDµ1 · · · iDµn}ψ ,

Oµ0µ1...µn
2 (µ) =Zqgn+1F

{µ0ρiDµ1 · · · iDµn−1F µn}
ρ ,

with Zijn+1 = Zijn+1(µ, ε), and {· · · } means symmetrized and traceless.
Using the above OPE, one can prove the factorization formula of the
quasi-PDF 10. Note that the above OPE is for the forward case only.

10Ma and Qiu, PRL 2018; Izubuchi, Ji, Jin, Stewart and Zhao, PRD 2018.
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OPE for the off-forward case

For the off-forward case, the twist-two operators will mix with
twist-two operators with total derivatives 11,

µ2 d

dµ2

[
ψ̄γ{µ0

←→
iDµ1 · · ·←→iDµn}ψ

]

=
n∑

m=0,even

Γnm(αs(µ))
[
i∂̄{µ1 · · · i∂̄µm ψ̄γµ0

←→
iDµm+1 · · ·←→iDµn}ψ

]
,

where the anomalous dimension Γnm is an upper-triangle matrix.
At leading-log, the above equations can be diagonalized by the
conformal operators with the leading eigen vector 12,

On,01 = (ie · ∂̄)nψ̄(e · γ)C3/2
n

(
ie · ←→D

ie · ←−∂ + ie · −→∂

)
ψ − trace ,

where C
3/2
n is the Geigenbauer polynomial.

11M. Diehl, Phys. Rept. 2003
12Efremov and Radyushkin, Theor. Math. Phys. 1980
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OPE for the off-forward case

At higher orders, we can always diagonalize an upper-triangle matrix,
and can write the eigen-vectors in more general forms

On,m1 = (ie · ∂̄)nψ̄(e · γ)Cn,m

(
ie · ←→D

ie · ←−∂ + ie · −→∂

)
ψ − trace ,

We can re-express the OPE (for the non-singlet case) in terms of the
comformal operators which do not mix under renormalization:

Õe·γ(z, µ) =
∞∑

n=0

[
Cn(µ2z2)

(−iz)n
n!

n∑

m=0,even

λn,mO
n,m
1 (µ) + higher-twist

]
,

where λn,0 = 1, λn,m 6=0 = O(αs) or 0? (do not affect the conclusion.)
When evaluated in a large-momentum nucleon state, the comformal
moments are

〈P |On,m1 (µ)|P 〉 =2amn+1(µ)
[
(e · P̄ )n+1 − trace

]
,

amn+1(µ) =ξn
∫ 1

−1
dy Cn,m

(
y

ξ

)
F (y, ξ, t, µ) . (1)
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OPE for the off-forward case

The full off-forward matrix element of ÕΓ(z, µ) is

〈P |Õγz (z, µ)|P 〉 =2P̄ z
∞∑

n=0

Cn(µ2z2)
(izP̄ z)n

n!

n∑

m=0,even

λn,mξ
n

×
∫ 1

−1

dy Cn,m

(
y

ξ

)
F (y, ξ, t, µ) +O(

P̄ 2

P̄ 2
z

, z2Λ2
QCD) ,

Fourier transform to x-space,

F̃ (x, P̄ z, ξ, t, µ) =

∫
dz

4π
eixzP̄

z 〈P |Õγz (z, µ)|P 〉

=

∫
dzP̄ z

2π
eixzP̄

z
∞∑

n=0

Cn(µ2z2)
(izP̄ z)n

n!

n∑

m=0,even

λn,mξ
n

×
∫ 1

−1

dy Cn,m

(
y

ξ

)
F (y, ξ, t, µ) +O(

P̄ 2

P̄ 2
z

,
Λ2

QCD

x2P̄ 2
z

) ,
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Correct form of matching coefficient

F̃ (x, P̄ z, ξ, t, µ) =

∫
dzP̄ zξ

2π|ξ| e
i xξ zP̄

zξ
∞∑

n=0

Cn

(
µ2 (zP̄ zξ)2

ξ2P̄ 2
z

)
(izP̄ zξ)n

n!

n∑

m=0,even

λn,m

×
∫ 1

−1

dy Cn,m

(
y

ξ

)
F (y, ξ, t, µ) +O(

P̄ 2

P̄ 2
z

,
Λ2

QCD

x2P̄ 2
z

) ,

=

∫ 1

−1

dy

|ξ| C
(
x

ξ
,
y

ξ
,
µ2

ξ2P̄ 2
z

)
F (y, ξ, t, µ) +O(

P̄ 2

P̄ 2
z

,
Λ2

QCD

x2P̄ 2
z

) ,

Or, by using the identity that

ξnCn,m

(
y

ξ

)
= ynCn,[n

2
]−m

(
ξ

y

)
,

we have

F̃ (x, P̄ z, ξ, t, µ) =

∫ 1

−1

dy

|y| C
(
x

y
,
ξ

y
,
µ2

y2P̄ 2
z

)
F (y, ξ, t, µ) +O(

P̄ 2

P̄ 2
z

,
Λ2

QCD

x2P̄ 2
z

) .
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Special limits

Both forms are equivalent and similar to the evolution kernel of GPD.

Distribution amplitude limit ξ → 1 13:

F̃ (x, P̄ z, ξ, t, µ) =

∫ 1

−1

dy

|ξ| C
(
x

ξ
,
y

ξ
,
µ2

ξ2P̄ 2
z

)
F (y, ξ, t, µ) +O(

P̄ 2

P̄ 2
z

, z2Λ2
QCD) ,

lim
ξ→1

F̃ (x, P̄ z, ξ, t, µ) =

∫ 1

−1

dy C
(
x, y,

µ2

P̄ 2
z

)
F (y, ξ, t, µ) +O(

P̄ 2

P̄ 2
z

, z2Λ2
QCD) ,

(2)

PDF in the forward limit ξ → 0:

F̃ (x, P̄ z, ξ, t, µ) =

∫ 1

−1

dy

|y| C
(
x

y
,
ξ

y
,
µ2

y2P̄ 2
z

)
F (y, ξ, t, µ) +O(

P̄ 2

P̄ 2
z

, z2Λ2
QCD) .

F̃ (x, P̄ z, 0, 0, µ) =

∫ 1

−1

dy

|y| C
(
x

y
, 0,

µ2

y2P̄ 2
z

)
F (y, 0, 0, µ) +O(

P̄ 2

P̄ 2
z

, z2Λ2
QCD) .

13J. Xu, Q.-A. Zhang and S. Zhao, PRD 2018
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Nonperturbative renormalization on the lattice

The renormalization of the operator does not depend on the external
state, so the renormalization factor for the quasi-GPD is the same as
the quasi-PDF case.
Regularization-independent momentum subtraction (RI/MOM)
scheme: for a quark state that is far off-shell p2 � Λ2

QCD, the
renormalization factor is obtained by imposing the subtraction
condition 14

Z−1
OM(z, a−1, pRz , µR)〈p|Q̃Γ(z, a−1)|p〉

∣∣∣
p2=µ2

R,pz=pRz

=〈p|Q̃Γ(z, a−1)|p〉tree .

ZOM can be nonperturbatively calculated on the lattice, and used to
renormalize the nucleon matrix elements of quasi-GPD.

14
Constantinou et al., PRD 2017; Stewart and Y.Z., PRD 2017; C. Alexandrou et al. (ETMC), NPB

2017; H.-W. Lin et al. (LP3), PRD 2017; Y.-S. Liu et al. (LP3), 2018
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Matching the quasi-GPD in the RI/MOM scheme

The renormalized quasi-GPD should be independent of the UV
regulator, so it must be the same in dimensional regularization (dim
reg) d = 4− 2ε. Therefore, the matching coefficient can be easily
calculated with dim reg.

At one-loop,

Z−1
OM(z, ε, pRz , µR) = 1−

∫ ∞

−∞
dx
[
e−i(x−1)zpRz − 1

]
q̃(1)(x, pRz , ε, µ

2
R) ,

where q̃(1)(x, pRz , µ
2
R) is the one-loop correction to the quark

quasi-PDF, which is already calculated 15.
Next we calculate the quasi-GPD in an on-shell quark state (for the
purpose of matching), and renormalize it with ZOM.

15Stewart and Y.Z., PRD 2017; Y.-S. Liu et al. (LP3), 2018
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Matching the quasi-GPD in the RI/MOM scheme

In coordinate space, the renormalized quasi-GPD is

〈p′|ÕRΓ (z, ε)|p〉 = Z−1
OM(z, ε, pRz , µR)〈p′|ÕΓ(z, ε)|p〉 .

Knowing that the bare quasi-GPD can be matched onto the GPD up
to an MS renormalization,

〈p′|ÕΓ(z, ε)|p〉 =ZMS(ε)

∫
dx e−ixzp

z

F̃ (x, pz, ξ, t, µ)

=ZMS(ε)

∫
dx e−ixzp

z

∫ 1

−1

dy

|y| C
(
x

y
,
ξ

y
,
µ2

y2P̄ 2
z

)
F (y, ξ, t, µ) ,

we can easily derive the relationship between the MS and RI/MOM
matching coefficients at one-loop order 16,

C
(
x

y
,
ξ

y
,
yP̄ z

pRz
,
µR
pRz

,
µ2

y2P̄ 2
z

)
=C
(
x

y
,
ξ

y
,
µ2

y2P̄ 2
z

)
− yP̄ z

pRz
q̃(1)

(
1 +

P z

pRz
(x− y), pRz , ε, µ

2
R

)

+ ZMS(ε) +

∫
dx′ q̃(1)(x′, pRz , ε, µ

2
R) .

16Y.-S. Liu, W. Wang, J. Xu, J.-H. Zhang, Q.-A. Zhang, S. Zhao and Y.Z., work
in preparation.
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Matching the quasi-GPD in the RI/MOM scheme

Discussion:

The matching correction is supposed to cancel out all the
dependence on the intermediate scales pRz , µR, as well as P̄ z, up to
power corrections;

Remant depedence on pRz and µR could be higher-order
perturbative effects;

The MS matching coefficient is independent of the infrared
regulator, so one can choose either massless or massive quarks for
convenience of calculation;

The MS matching coefficient is very similar to the
transverse-momentum scheme matching. The latter can serve as a
cross check.
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Summary

We use OPE to rigorously derive the factorization formula for the
quasi-GPD;

The quasi-GPD can be renormalized the same way as the
quasi-PDF;

Perturbative matching for the RI/MOM quasi-GPD has been
derived at one-loop order.
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