
Low energy

BSM NEW FUNDAMENTAL INTERACTIONS 

High energy

New particles produced directlyNew particles hints 

• in loops

• mediators of interaction

• ...



Low energy

BSM NEW FUNDAMENTAL INTERACTIONS 

Effective field theories for low energy 

➡ New (heavy) dof integrated out  

Consider all  Dirac bilinears for EW interactions 

➡ 1,   γ5,   γμ(1+γ5),   σμν 

➡ Define ``Wilson coefficient" for new interaction

High energy

New particles produced directlyNew particles hints 

• in loops

• mediators of interaction

• ...

Read “Beyond V-A” 
 Includes scalar and tensor bil.



EFT AT THE QUARK LEVEL

[Bhattarchaya et al., PRD85]

[Cirigliano et al., NPB 830]BETA DECAY IN EFT

SM

4-fermion interaction

u

d

u

d

V. Cirigliano et al. / Nuclear Physics B 830 (2010) 95–115 101

order in v2/Λ2, we do not need to consider diagrams contributing to µ → eν̄ανβ with the “wrong
neutrino flavor”, because they would correct the muon decay rate to O(v4/Λ4). After integrating
out the W and Z, the muon decay effective lagrangian reads:

Lµ→eν̄eνµ = −g2

2m2
W

[
(1 + ṽL) · ēLγµνeLν̄µLγ µµL + s̃R · ēRνeLν̄µLµR

]
+ h.c., (31)

where m2
W = 1/2g2v2 is the uncorrected W mass and
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, (32)

s̃R = +2[α̂le]2112, (33)

represent the correction to the standard (V −A)⊗ (V −A) structure and the coupling associated
with the new (S − P) ⊗ (S + P) structure, respectively.

3.4. Effective lagrangian for beta decays: dj → uiℓ
−ν̄ℓ

The low-energy effective lagrangian for semileptonic transitions receives contributions from
both W exchange diagrams (with modified W -fermion couplings) and the four-fermion operators
O

(3)
lq , Oqde , Olq , Ot

lq . As in the muon case, we neglect lepton flavor violating contributions
(wrong neutrino flavor). The resulting low-energy effective lagrangian governing semileptonic
transitions dj → uiℓ

−ν̄ℓ (for a given lepton flavor ℓ) reads:
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where

Vij · [vL]ℓℓij = 2Vij
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, (35)

Vij · [vR]ℓℓij = −[α̂ϕϕ]ij , (36)

Vij · [sL]ℓℓij = −[α̂lq ]∗ℓℓji , (37)

Vij · [sR]ℓℓij = −Vim[α̂qde]∗ℓℓjm, (38)

Vij · [tL]ℓℓij = −
[
α̂t

lq

]∗
ℓℓji

. (39)

In Eqs. (35)–(39) the repeated indices i, j,ℓ are not summed over, while the index m is.

4. Flavor structure of the effective couplings

So far we have presented our results for the effective lagrangian keeping generic flavor struc-
tures in the couplings [α̂X]abcd (see Eqs. (32), (33), and (35) through (39)). However, some of the
operators considered in the analysis contribute to flavor changing neutral current (FCNC) pro-
cesses, so that their flavor structure cannot be generic if the effective scale is around Λ ∼ TeV:
the off-diagonal coefficients are experimentally constrained to be very small. While it is certainly
possible that some operators (weakly constrained by FCNC) have generic structures, we would

Scalars 
εS≣sL+sR

Tensor 
εT≣tL

right

dj ! uil
�⌫l

L(eff) = LSM +
X

i

1

⇤2
i

Oi

that allows stringent bounds on the new-physics effective
couplings. In this work we are interested in assessing the
sensitivity of neutron decay to new physics in the context
of (i) other low-energy constraints from nuclear beta de-
cays and pion decays; and (ii) constraints from high-energy
colliders (LEP, Tevatron, LHC). To set the stage for the
discussion, we summarize the observables that give us
access to the couplings appearing in Eq. (3) (we will
come back in detail to these in following sections):

(i) The combination (!L þ !R) affects the overall nor-
malization of the effective Fermi constant. This is
phenomenologically accessible through quark-
lepton universality tests (precise determination of
Vud from 0þ ! 0þ nuclear decays under the as-
sumption that GF ¼ G", where G" is the Fermi
constant extracted from muon decay). An extensive
analysis of the constraints on (!L þ !R) from univer-
sality tests and precision electroweak observables
from the Z pole was performed in Ref. [21], within
BSM scenarios with minimal flavor violation. In this
context it was shown that constraints from low-
energy are at the same level or stronger (depending
on the operator) than from Z-pole observables and
eþe# ! q !q cross-section measurements at LEP.

(ii) The right-handed coupling !R affects the relative
normalization of the axial and vector currents. In
neutron decay !R can be reabsorbed in a redefinition
of the axial coupling and experiments are only
sensitive to the combination ð1# 2!RÞgA=gV (gV
and gA are the vector and axial form factors at zero
momentum transfer, to be precisely defined below).
Disentangling !R requires precision measurements
of ð1# 2!RÞgA=gV and precision calculations of
gA=gV in LQCD.

(iii) The effective pseudoscalar combination !P &
sL # sR contributes to leptonic decays of the
pion. It is strongly constrained by the helicity-
suppressed ratio R# & "ð# ! e$½%(Þ="ð# !
"$½%(Þ. Moreover, as discussed in Refs. [25–27],
the low-energy coupling !P receives contributions
proportional to !S;T through electroweak radiative
corrections. We will discuss the resulting con-
straints on !S;P;T in Sec. IVA4.

(iv) Both the scalar combination !S & sL þ sR and the
tensor coupling !T & tL contribute at linear order
to the Fierz interference terms in beta decays of
neutrons and nuclei, and the neutrino-asymmetry
correlation coefficient B in polarized neutron and
nuclear decay (see Appendix B for notation).
Because of the peculiar way in which the Fierz
interference term appears in many asymmetry mea-
surements, bounds on !S and !T can also be
obtained by observation of the beta-asymmetry
correlation coefficient A, electron-neutrino correla-
tion a, and positron polarization measurements in
various nuclear beta decays. Finally, the tensor
coupling !T can also be constrained through
Dalitz-plot studies of the radiative pion decay
# ! e$%.

(v) All of the above operators can provide signatures at
colliders. Currently there are no competitive collider
bounds on the chirality-flipping scalar and tensor
couplings !S;P;T , because their interference with the
SM amplitude carries factors ofmf=Ef (wheremf is
a light fermion mass, f 2 fe; u; dg), which at col-
lider energies strongly suppresses the whole effect.
So we immediately see that low-energy physics
provides a unique opportunity to probe these cou-
plings, to which collider searches are sensitive only
quadratically (i.e. via noninterference terms). We
will derive in Sec. VII the current bounds on !S;T
from searches at the LHC, and we will show that
with higher center-of-mass energy and integrated
luminosity they will become competitive with low-
energy searches.

Next, we review the analysis of neutron decay in the SM
and beyond within the EFT framework described above.

III. NEUTRON ! DECAY

The amplitude for neutron decay nðpnÞ !
pðppÞe#ðpeÞ !$eðp$Þ mediated by the effective Lagrangian
(3) involves in principle the matrix elements between the
neutron and proton of all possible quark bilinears. These
can be parameterized in terms of Lorentz-invariant form
factors as follows [28]:

hpðppÞj !u%"djnðpnÞi ¼ !upðppÞ
!
gVðq2Þ%" þ ~gTðVÞðq2Þ

2MN
&"$q
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q"

"
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$ þ ~gPðq2Þ
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%5unðpnÞ (5b)

hpðppÞj !udjnðpnÞi ¼ gSðq2Þ !upðppÞunðpnÞ (5c)

hpðppÞj !u%5djnðpnÞi ¼ gPðq2Þ !upðppÞ%5unðpnÞ (5d)

hpðppÞj !u&"$djnðpnÞi ¼ !upðppÞ½gTðq2Þ&"$ þ gð1ÞT ðq2Þðq"%$ # q$%"Þ
þ gð2ÞT ðq2Þðq"P$ # q$P"Þ þ gð3ÞT ðq2Þð%" 6q%$ # %$ 6q%"Þ(unðpnÞ (5e)
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with higher center-of-mass energy and integrated
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from the Z pole was performed in Ref. [21], within
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eþe# ! q !q cross-section measurements at LEP.
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and gA are the vector and axial form factors at zero
momentum transfer, to be precisely defined below).
Disentangling !R requires precision measurements
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ChiPT gets it at the Chern-Dashen point.  
We could get it  straight at 0 mmt transfer!

Very indirect though… 
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In the limit m2

hh

⌧ Q2 the structure functions of interest can be written in terms of PDFs and DiFFs, to leading-
order, in the following way [3]:
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with the first subindex of the structure function corresponding to the beam polarization, the second to the target.
We now consider the structure function F sin�

LU

in Eq. (12) for ⇡+⇡� pair production. The relevant spin asymmetry
can be built as ratios of structure functions. For the longitudinal polarization of the beam, i.e. the LU combinations,
one can define the following BSA:
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)
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where " is the ratio of longitudinal and transverse photon flux and can be expressed in terms of y. Combining
Eqs. (10,12), to leading-order in ↵

s

and leading term in the PWA, the BSA becomes
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(16)

The dependence in (z,m
⇡⇡

) is factorized in the DiFFs and kinematical factors, leaving the dependence in x for
the PDFs. The twist-2 functions are f

1

(x), H^
1

(z,m
⇡⇡

) and D
1

(z,m
⇡⇡

), while the twist-3 functions are e(x) and
G̃^(z,m

⇡⇡

).2

IV. RESULT: EXTRACTION OF THE TWIST-3 PDF e(x)

The longitudinal Beam-Spin Asymmetry Asin�R

LU

(z,m
⇡⇡

, x;Q, y) in Eq. (15) has been recently extracted by the
CLAS Collaboration on data collected by impinging the CEBAF 5.5-GeV longitudinally-polarized electron beam on
an unpolarized 2H hydrogen target [40].

In Fig. 2 the measured asymmetry is shown in two sets of 1D bins [40], representing respectively the z and m
⇡⇡

dependence of the BSA. In Fig. 1 the x-dependence of the BSA shows the data points used in the present extraction.
The two plots of Fig. 2 are used to check the validity of the framework and its assumptions.

The twist-3 chiral-odd PDF e(x) is accessed through the x-dependent 1D projection of the BSA. The variables
(z,m

⇡⇡

), proper to the DiFFs, do not enter in convolutions, so that, following the notation of Ref. [8], we can define

2
From now on, we will drop the indices refering to the partial waves.
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The scalar charge is here too! 

3

contributions comes from a QCD operator identity for the non-local quark-quark operator,  ̄ , [14–18]. Kinematical
twist-3 can be reduced to an expression containing only twist-2 PDFs via QCD equations of motion, it is the so-called
Wandzura-Wilczek (WW) approximation [19]. The PDF e(x) vanishes in this approximation. QCD equations of
motion allow to decompose the chiral-odd twist-3 distributions into 3 terms,

eq(x) = eqloc(x) + eqgen(x) + eqmass(x) . (2)

The first term comes from the local operator:

eqloc(x) =
1

2M

Z
d�

2⇡
ei�xhP | ̄

q

(0) 
q

(0)|P i = �(x)

2M
hP | ̄

q

(0) 
q

(0)|P i ; (3)

the second term is a dynamical or genuine twist-3 contribution, e.g. it is interaction dependent and contains explicit
gluon fields; the last term is proportional to the quark mass and its Mellin moments are expressed as

Z
1

�1

dx xn�1eqmass(x) =
m

q

M

Z
1

�1

dx xn�2fq

1

(x) , (4)

for n > 1 and is zero for n = 0.
The QCD evolution of e(x) has been studied up to NLO [16–18]. Due to the chiral-odd nature of the current, there

is no mixing with gluons. Evolution of twist-3 operators is complex but can be reduced to a DGLAP-like scheme in
the large-N

c

limit.
The PDF e(x) has been calculated in various models. We cite the chiral quark soliton model, e.g. [20, 21], the

MIT bag model [15, 22], the spectator model [23, 24], the instanton QCD vacuum calculus and the perturbative
light-cone Hamiltonian approach to O(↵

s

) with a quark target [25, 26]. In Ref. [21] the non-relativistic limit of eq(x)
was studied. A calculation in the light-front quark model is ongoing [27].

The chiral-odd twist-3 PDF e(x) carries important hadronic information. It o↵ers a unique road to the determination
of the scalar charge, i.e. the first Mellin moment of e(x):

Z
1

�1

dx eq(x,Q2) =

Z
1

�1

dx eqloc(x,Q
2) =

1

2M
hP | ̄

q

(0) 
q

(0)|P i(Q2) = �
q

(Q2) . (5)

The isoscalar combination of the scalar charge is related to the pion-nucleon �-term

�
u

(Q2) + �
d

(Q2) ⌘ �
⇡N

(m
u

(Q2) +m
d

(Q2)) /2
. (6)

The pion-nucleon �-term is normalization point invariant. It is related to the strangeness content of the proton.
The �-term represents the contribution from the finite quark masses to the mass of the nucleon [28]. The value
�
⇡N

= 79± 7 MeV was obtained in Ref. [29].
Besides being fundamental characteristics of the nucleon, the scalar charges might be important in the search for

physics Beyond the Standard Model. For instance, in a study of the elastic scattering of supersymmetric cold dark
matter particles on nucleons, it has been shown that the cross sections depend strongly on the value of the pion-
nucleon �-term [30]. General model-independent bounds on direct dark matter detection include all possible e↵ective
operators, beyond the V � A electroweak structure [31]. A classification of these operators and their implications
include scalar form factors, that are related to the scalar charges in the forward limit. Also, the isovector scalar charge
is related to “new currents” in beta decays, in the sense that the leptonic current allows the weak V � A current
structure in the Standard Model. New structures, such as scalar and tensor, would give hint of physics Beyond the
Standard Model [32] if detected.

The sum rule in Eq. (5) is not strickly speaking related to a charge, as that charge is not scale invariant. Moreover
the contribution to the charges comes only from the singular –local– part of the twist-3 PDF. While little can be told
experimentally on the singular contribution, it has been studied in various models. In chiral models, the presence
of this singular term in the distribution is inseparably connected with the nonzero value of quark condensate in the
spontaneously-breaking QCD vacuum [9, 21, 33].

The second moment of eq is proportional to the number of valence quarks of flavor q,
Z

1

�1

dx xeq(x) =

Z
1

0

dx x(eq � eq̄)(x) =
m

q

(Q2)

M
N

q

, (7)
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DIHADRON ASYMMETRY FOR UNPOLARIZED 
TARGET  INVOLVING SCALAR PDF (subleading)

FIRST STEP OF A LONG WAY TOWARDS THE SCALAR CHARGE

SCALAR CHARGE 
related to e(x=0) 

lots of things to think of...
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