DI-HADRON AND POLARIZED LAMBDAS AS NOVEL PROBES OF THE NUCLEON STRUCTURE

Anselm Vossen

INT 10/11/2018

ACCESS NUCLEON STRUCTURE THROUGH FRAGMENTATION FUNCTIONS

SINGLE HADRON PRODUCTION IN SIDIS IS A WELL TRAVELLED PATH

Observables:

z: fractional energy of the quark carried by the hadron $p_{h,T}$: transverse momentum of the hadron wrt the quark direction: **TMD FFs**

Parton polarization \rightarrow	Spin averaged	longitudinal	transverse
Hadron Polarization 🕹			
spin averaged	$D_1^{h/q}(z,p_T) = \left(\bullet \rightarrow \bullet \right)$		$H_1^{\perp h/q}(z, p_T) = \left(\stackrel{\bullet}{\bullet} \rightarrow \bigcirc \right) - \left(\stackrel{\bullet}{\bullet} \rightarrow \bigcirc \right)$
longitudinal			
Transverse (here Λ)			

"YOU THINK YOU UNDERSTAND SOMETHING?---NOW ADD SPIN...IN HADRONIZATION!"

• →polarized final states

- \rightarrow di-hadron correlations
- Explore spin-orbit correlation in hadronization
- Additional degrees of freedom in final state make targeted extraction of nucleon structure possible → see h₁(x), e(x)
- New Fragmentation Functions
- Obvious relevance for the EIC
 - Here: Results from RHIC, Belle and plans at Jlab/Belle

ENTER POLARIZATION IN THE FINAL STATES

Observables:

z: fractional energy of the quark carried by the hadron

 $p_{h,T}$: transverse momentum of the hadron wrt the quark direction: **TMD FFs**

Parton polarization \rightarrow Spin averaged longitudinal transverse Hadron Polarization 🕹 $H_1^{\perp h/q}(z, p_T) = \left(\stackrel{\bullet}{\bullet} \longrightarrow \bigcirc \right) - \left(\stackrel{\bullet}{\bullet} \longrightarrow \bigcirc \right)$ $D_1^{h/q}(z, p_T)$ spin averaged = [• → ●] longitudinal $D_{1T}^{\perp \Lambda/q}(z, p_T) = \left[\bullet \rightarrow \bullet \right]$ Transverse (here Λ) $H_1^{\Lambda/q}(z, p_T) = \left[\stackrel{\bullet}{\bullet} \rightarrow \stackrel{\bullet}{\bullet} \right] - \left[\stackrel{\bullet}{\bullet} \rightarrow \stackrel{\bullet}{\bullet} \right]$

- Analogue \rightarrow similar to PDFs encoding spin/orbit correlations
- Determining final state polarization needs self analyzing decay (Λ)
- Gluon FFs similar but with circular/linear polarization (not as relevant for e+e-)

ENTER POLARIZATION IN THE FINAL STATES

Observables:

z: fractional energy of the quark carried by the hadron

 $p_{h,T}$: transverse momentum of the hadron wrt the quark direction: **TMD FFs**

Parton polarization \rightarrow	Spin averaged	longitudinal	transverse
Hadron Polarization			
spin averaged	$D_1^{h/q}(z, p_T) = \left(\bullet \rightarrow \bullet \right)$		$H_1^{\perp h/q}(z, p_T) = \left(\stackrel{\bullet}{\bullet} \rightarrow \bigcirc \right) - \left(\stackrel{\bullet}{\bullet} \rightarrow \bigcirc \right)$
longitudinal			
Transverse (here Λ)	$D_{1T}^{\perp \Lambda/q}(z, p_T) = \left(\bullet \rightarrow \bullet \right)$		

• Analogue \rightarrow similar to PDFs encoding spin/orbit correlations

- Determining final state polarization needs self analyzing decay (Λ)
- Gluon FFs similar but with circular/linear polarization (not as relevant for e+e-)

DI-HADRON FRAGMENTATION FUNCTIONS

Additional Observable:

 $\vec{R} = \overrightarrow{P_1} - \overrightarrow{P_2}$:

The relative momentum of the hadron pair is an additional degree of freedom:

the orientation of the two hadrons w.r.t. each other and the jet direction can be an indicator of the quark transverse spin

Parton polarization \rightarrow	Spin averaged	longitudinal	transverse
Hadron Polarization 🗸			
spin averaged	$D_1^{h/q}(z, M)$ \longrightarrow		
longitudinal			$G_1^{\perp}(z,M,P_h,\theta)=$ T-odd, chiral-even \rightarrow jet handedness QCD vaccum strucuture
Transverse (here Λ))		HI [*] (z,M)= T-odd, chiral-odd Colinear
Relative momentum of hadrons can carry away angular momentum • Partial wave decomposition in θ			P_1 P_1 P_h P_h

• Relative and total angular momentum \rightarrow In principle endless tower of FFs

Interference Fragmentation Function in p-p

- Access to gluons
- High scale
- No jet related systematics

- Up to two orders of magnitude higher Q²
- Valence region
- No u quark dominance
- Less x-Q² correlation

 $\frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} (\Phi_{RS}) = A_{\text{UT}} \sin(\Phi_{\text{RS}}) \quad A_{\text{UT}} \propto h_1 \otimes H_1^{\triangleleft}$ ϕ_{s} : Angle between polarization vector and event plane

 $\varphi_{\mathsf{R}}~$: Angle between two-hadron plane and event plane

FIRST OBSERVATION OF DI-HADRON TSSA IN PP

Phys.Rev.Lett. 115 (2015) 242501

NEW DATA FROM 2012 (~10X 2006)

- High Precision data up to x~0.25
- $<z>\sim0.45$ (access via p_T dependence)
- 2x more data on tape

NEW: 500 GEV RESULTS

Phys.Lett. B780 (2018) 332-339

COMPARISON BETWEEN 0.2 AND 0.5 TEV FROM 2011: CONSISTENT AND NO SIGN OF EVOLUTION

$A_{UT} \propto h_1 \cdot H_1^{<}$

Indeed: No Evolution, Gluons do not couple to transversity! Current run will give 15x statistics @ 500 GeV!

ETA DEPENDENCE

• Most sensitive to x

SAME SIDE PAIRS

IMPACT ON TRANSVERSITY EXTRACTION

- See Marco's talk (only 200 GeV results so far)
- Impact of 500 GeV results expected to be significant

EXAMPLE, ACCESS OF e(x) in SIDIS X-SECTION

• Single hadron cross-section: mixes other contributions:

$$\begin{split} F_{LU}^{\sin(\phi_h)} &= \frac{2M}{Q} \mathcal{I} \bigg[-\frac{k_T \hat{P}_{h\perp}}{M_h} \left(xeH_1^{\perp} + \frac{M_h}{Mz} f_1 \tilde{G}^{\perp} \right) \\ &+ \frac{p_T \hat{P}_{h\perp}}{M} \left(xg^{\perp} D_1 + \frac{M_h}{Mz} h_1^{\perp} \tilde{E} \right) \bigg] \end{split}$$

See M. Burkhardt talk on interpretations as transverse force on struck quark

EXAMPLE, ACCESS OF e(x) in SIDIS X-SECTION

• Di-hadron cross section: Clean access to e(x)

$$F_{LU}^{\sin\phi_R} = -x \frac{|\boldsymbol{R}|\sin\theta}{Q} \left[\frac{M}{m_{hh}} x e^q(x) H_1^{\triangleleft q} \left(z, \cos\theta, m_{hh} \right) + \frac{1}{z} f_1^q(x) \widetilde{G}^{\triangleleft q} \left(z, \cos\theta, m_{hh} \right) \right],$$

- See e.g. Aurore Courtoy, arXiv: 1405.7659
- Evidence from CLAS6:

HISTORY OF WORMGEAR FF G_1^{\perp}

- First suggestion to observe in e⁺e⁻ by Boer, Jakob, Radici, PRD67 (2003) 094003
 - Postulate connection to jet handedness proposed by Efremov and Kharzeev Phys.Lett.
 B366 (1996) 311-315 (connection to chromomagnetic effects)
- Measurement by Belle \rightarrow No signal
- New model calculations by Matevosyan et al connecting G₁[⊥] with single hadron Collins effect in string fragmentation (a bit like worm gear functions)→Interesting to learn about spin momentum correlations in hadronization: sizable asymmetries contradicted by Belle result??
- Mistake found in Boer et. al: Phys.Rev. D97 (2018) no.7, 074019 \rightarrow Need weighted asymmetry including dependence on P_{hT}
- Accessible in SIDIS via weighted asymmetries

$G_1^{\perp}MEASUREMENT IN SIDIS AND e^+e^-$

• New Observable in e⁺e⁻:

$$\begin{pmatrix} \frac{q_T^2 \left(3\sin(\varphi_q - \varphi_R)\sin(\varphi_q - \varphi_{\bar{R}}) + \cos(\varphi_q - \varphi_R)\cos(\varphi_q - \varphi_{\bar{R}})\right)}{M_h \bar{M}_h} \\ = \frac{12\alpha^2 A(y)}{\pi O^2} \sum e_a^2 \left(G_1^{\perp a, [0]} - G_1^{\perp a, [2]}\right) \left(\bar{G}_1^{\perp \bar{a}, [0]} - G_1^{\perp \bar{a}, [2]}\right),$$

Matevosyan., Bacchetta, Boer, Courtoy, Kotzinian, Radici, Thomas: Phys. Rev. D 97, 074019 (2018).

• New Observable in SIDIS with longitudinal target and beam spin asymmetries :

$$\left\langle \frac{P_{h\perp}\sin(\varphi_h - \varphi_R)}{M_h} \right\rangle_{UL} \sim S_L \sum_a e_a^2 g_{1L}^a(x) \ z \ G_1^{\perp a}(z, M_h^2)$$

$$\left\langle \frac{P_{h\perp}\sin(\varphi_h - \varphi_R)}{M_h} \right\rangle_{LU} \sim \lambda_e \sum_a e_a^2 \ f_1^a(x) \ z \ G_1^{\perp a}(z, M_h^2)$$
Matevosyan, Kotzinian ADP-17-42-T1048

N.B. Compass did not observe significant asymmetry for unweighted asymmetry

20

DI-HADRON CORRELATIONS BETWEEN TARGET AND CURRENT FRAGMENTATION REGION

See e.g. Anselmino, Barone, Kotzinian **Phys.Lett. B706 (2011) 46-52**

Access chiral-odd Fracture functions

Forward Detector (FD)

- TORUS magnet
- HT Cherenkov Counter
- Drift chamber system
- LT Cherenkov Counter
- Forward ToF System
- Pre-shower calorimeter
- E.M. calorimeter
- Forward Tagger
- RICH detector

Central Detector (CD)

- Solenoid magnet
- Silicon Vertex Tracker
- Central Time-of-Flight
- Central Neutron Detector
- MicroMegas

Beamline

- Photon Tagger Dump
- Shielding
- Targets
- Moller Polarimeter
- Faraday Cup

KINEMATIC COVERAGE

SIDIS cuts

Q2 > I GeV2 W > 2 GeV <u>Outbending torus field</u>

See M. Mirazita At SPIN2018

PROJECTIONS FOR ASYMMETRIES SENSITIVE TO e(x)

- I 20/30 days of running are approved with unpolarized liquid H2/liquid D2 targets (underway!)
- I 20 + 50 days of running are approved with longitudinally polarized NH3/ND3 targets (targets ready ~2020)

KEKB \rightarrow SUPERKEKB: DELIVER INSTANTANEOUS LUMINOSITY X 40

BELLE II DETECTOR (COMP. TO BELLE)

CURRENT STATUS AND SCHEDULE

- Phase I (complete)
 - Accelerator commissioning
- Phase 2
 - First collisions (20±20 fb⁻¹)
 - (achieved 10³³ cm⁻²s⁻¹ May 23rd)
 - Partial detector
 - Background study
 - Physics possible
- Phase 3 ("Run I", early 2019)
 - Nominal Belle II start
- Ultimate goal: 50 ab⁻¹

26 APRIL 2018 00:38 GMT+09:00: FIRST COLLISIONS

OUTLOOK DI-HADRON CHANNELS AT RHIC, BELLE II AND THE EIC

- Measurements at RHIC and EIC are <u>complementary</u>!
- Transversity through di-hadron channel
 - STAR data on tape (2012 + 2x more), order of magnitude more 500 GeV
 - Unpolarized x-section for gluon FF
- Twist3 e(x)

•

. . .

- Should be possible at **RHIC** and **EIC**
- Wormgear FF Gı⊥
 - Precision measurements in A_{LU} at **RHIC** and **EIC** possible
 - Need to check universality (T-odd, chiral-even)
- Other di-hadron channels
 - Boer-Mulders →Can decouple from Cahn effect in di-hadrons by measuring azimuthal modulations around P_h (also planned at CLAS12)
- Belle II will contribute measurements for precision extraction of di-hadron FFs for pions and kaons

LAMBDA PRODUCTION

- Inclusion of polarization leads to rich hadronization structure (see e.g. Kanazawa, Metz Pitonyak, Schlegel Phys.Lett. B744 (2015) 385-390, Metz, Pitonyak Phys.Lett. B723 (2013) 365-370
- Longstanding question: Large Λ transverse polarization in unpolarized pp collision
- \rightarrow Polarizing FF $D_{1T}^{\perp}(z, p_{\perp}^2)$?
- T-odd TMD but chiral-even, Universality? Boer, Kang, Vogelsang, Yuan Phys.Rev.Lett. 105 (2010) 202001
 - Needs e+e- + SIDIS measurments
- NB: previous SIDIS lambda photoproduction or VEry large statistical uncertainties

Phys.Rev. D91 (2015) no.3 032004

beryllium target Na48 beryllium About 50% decay contributions

FIRST OBSERVATION BY BELLE

arXiv:1808.05000, submitted to PRL

ASYMMETRIES EXPLAINED BY FLAVOR DECOMPOSITION?

u-quark carry polarization? Or shape explainable with drop in strange? (but rise in p_T should Compenate?)

33

A FIRST: CORRECTION FOR FEED-DOWN AND CHARM CONTRIBUTION

TENSION WITH THEORY: ASSOCIATED PRODUCTION

High Λ z, low π z Dominated by strange for π^+ and u for π^- but asymmetries Simliar?

37

High Λ z, low K z Dominated by strange for π^+ and u for K reflected in asymmetries

38

Λ AT CLAS

- Plenty of Λ physics at CLAS6 -- but mostly target or exclusive production
- CLASI2 could do semi-inclusive lambdas

- Would open up many physics topics
- Example, compare with Λ^{\uparrow} production in e+e- (Boer, Kang, Vogelsang, Yuan, PRL. 105 (2010) 202001, learn about TMD factorization
- **Optimistically** expect ~100M Λ s is initial running with unpolarized target in acceptance

OUTLOOK TO Λ PHYSICS AT RHIC, EIC AND BELLE II

- Λ physics offers exciting opportunities at the EIC and Belle II
- Currently virtually no precision data from SIDIS (current fragmentation)
- Belle proof of principle that large polarizations can be observed
- At the **EIC** we can
 - Probe flavor decomposition of $D_{1T}^{\perp \Lambda/q}$
 - Test Universality of $D_{1T}^{\perp \Lambda/q}$
 - Access transversity in a colinear way using $H_{1T}^{\Lambda/q}$
 -
- **BELLE II** will allow measure correlations between Λ^{\uparrow} single, di-hadron and Λ^{\uparrow} production
- ...
- At **RHIC** look at polarizing Λ in jets?

SUMMARY & CONCLUSION

- Lambda and di-hadron production open up exciting possibilities to access the nucleon structure and learn about spin orbit correlations in hadronization
- Existing STAR data provides ample opportunity to explore at high scales and measure gluon FFs
- CLASI2 and Belle II will provide large datasets to study di-hadron correlations
- At EIC clean measurements at high scales can be performed
 - Access to nucleon structure in a complimentary (and more targeted way)
 - Test universality and flavor structure of FFs

Workshop on Novel Probes of the Nucleon Structure in SIDIS, e⁺e⁻ and pp (FF2019) Duke University March 14-16 2019

Organizing Committee Harut Avakian (Jlab) (co-chair) Keith Griffioen (W&M) Kyungseon Joo (Uconn) Marco Radici (INFN) Ralf Seidl (RIKEN) Anselm Vossen (Duke/Jlab, chair) Jixie Zhang (UVA)

Contact: anselm.vossen@duke.edu

BACKUP

DI-HADRON FRAGMENTATION FUNCTIONS

Additional Observable:

 $\vec{R} = \overrightarrow{P_1} - \overrightarrow{P_2}$:

The relative momentum of the hadron pair is an additional degree of freedom:

<u>the orientation of the two hadrons w.r.t. each other and the jet direction can be an indicator of the quark transverse spin</u> <u>Do not need</u>

Small \vec{R} : non-perturbative object.

G_1^{\perp} : T-odd FF

- chiral-even function
- log. polarized $q \rightarrow$ two unp. Hadrons
- →connection to jet-handedness and (possibly) QCD vacuum structure

H₁[∢]: T-odd FF

- Chiral-odd function
- Transv. polarized $q \rightarrow two unp.$ Hadrons
- \rightarrow Collinear! (unlike Collins)
- Relative momentum of hadrons can carry away angular momentum
 - Partial wave decomposition in θ
 - Relative and total angular momentum \rightarrow In principle endless tower of FFs
 - Analogue of 1h production with spin in final state

DI-HADRON FRAGMENTATION FUNCTIONS

Additional Observable:

 $\vec{R} = \overrightarrow{P_1} - \overrightarrow{P_2}$:

The relative momentum of the hadron pair is an additional degree of freedom:

<u>the orientation of the two hadrons w.r.t. each other and the jet direction can be an indicator of the quark transverse spin</u> <u>Do not need</u>

Small \vec{R} : non-perturbative object.

G_1^{\perp} : T-odd FF

- chiral-even function
- log. polarized $q \rightarrow$ two unp. Hadrons
- →connection to jet-handedness and (possibly) QCD vacuum structure

H₁[∢]: T-odd FF

- Chiral-odd function
- Transv. polarized $q \rightarrow two unp.$ Hadrons
- \rightarrow Collinear! (unlike Collins)
- Relative momentum of hadrons can carry away angular momentum
 - Partial wave decomposition in θ
 - Relative and total angular momentum ightarrowIn principle endless tower of FFs
 - Analogue of 1h production with spin in final state

JEFFERSON LAB

KINEMATIC COVERAGE AND COMPARISON WITH SIDIS

- Up to two orders of magnitude higher Q²
- Valence region
- No u quark dominance
- Less x-Q² correlation

JEFFERSON LAB WITH CEBAF AT 12 GEV

ASSOCIATED PRODUCTION

DI-HADRON FRAGMENTATION FUNCTIONS

- Relative momentum of hadrons can carry away angular momentum
 - Partial wave decomposition in $\boldsymbol{\theta}$
 - Relative and total angular momentum \rightarrow In principle endless tower of FFs
 - Analogue of 1h production with spin in final state
- Transverse polarization dependence in collinear framework $H^2 \rightarrow$ **Most precise extraction of transversity** \rightarrow See M. Radici talk
- **Minimize systematics in pp**: No thrust axis, theoretically and experimentally cleaner
- Makes 'new' FFs possible, such as G_1^{\perp} : T-odd chiral even. In 1h case, this needs polarized hadron in the final state
- →See Monday talk by Ralf

CLAS12

QUARK-GLUON INTERACTIONS

- Quarks probed in deep-inelastic scattering move in gluon background field
 - Gauge link Integrated effect of quark gluon interactions
- Some of the most interesting effects can be attributed to the dependence of these interactions on spatial deformations and polarization of PDFs
 - Example: Sivers effect

$$\langle \mathbf{k}_{\perp} \rangle \sim \left\langle P, S \left| \bar{q}(0) \gamma^{+} \int_{0}^{\infty} d\eta^{-} G^{+\perp}(\eta) q(0) \right| P, S \right\rangle$$

- The instant quark gluon interactions are described by Twist3 PDFs
- Projections of

$$\Phi^{\mu}_{Aij}(x) = \int \frac{\mathrm{d}\tau}{2\pi} \,\mathrm{e}^{\mathrm{i}\tau x} \langle PS | \bar{\phi}_j(0) \, g A^{\mu}(\tau n) \, \phi_i(\tau n) | PS \rangle \,.$$

55

EXAMPLE E(X)

- Transverse force on transversely polarized quarks (Burkhardt)
- Model calculations show significant magnitude:

Jaffe, Ji, Nucl. Phys. **B**375, 527{560 (1992).

EXAMPLE, ACCESS OF e(x) in SIDIS X-SECTION

• Single hadron cross-section: mixes other contributions:

$$\begin{split} WV_{Approximation} \\ F_{LU}^{\sin(\phi_h)} &= \frac{2M}{Q} \mathcal{I} \bigg[-\frac{k_T \hat{P}_{h\perp}}{M_h} \left(xeH_1^{\perp} + \frac{M_h}{Mz} f_1 \tilde{G}^{\perp} \right) \\ &+ \frac{p_T \hat{P}_{h\perp}}{M} \left(xg^{\perp} D_1 + \frac{M_I}{Mz} h_1^{\perp} \tilde{E} \right) \bigg] \end{split}$$

NEED NEW PROBES BEYOND IH

- Additional degrees of freedom to resolve ambiguities :
- Di-hadron Correlations
- Polarized Λ production

EXAMPLE, ACCESS OF e(x) in SIDIS X-SECTION

• Di-hadron cross section: Clean access to e(x)

$$F_{LU}^{\sin\phi_R} = -x \frac{|\mathbf{R}|\sin\theta}{Q} \left[\frac{M}{m_{hh}} x e^q(x) H_1^{\triangleleft q} \left(z, \cos\theta, m_{hh} \right) + \frac{1}{z} f_1^q(x) \widetilde{G}^{\triangleleft q} \left(z, \cos\theta, m_{hh} \right) \right],$$
(WW Approximation

• Evidence from CLAS6:

HISTORY OF G_1^{\perp}

- First suggestion to observe in e⁺e⁻ by Boer, Jakob, Radici, PRD67 (2003) 094003
 - Postulate connection to jet handedness proposed by Efremov and Kharzeev Phys.Lett.
 B366 (1996) 311-315 (connection to chromomagnetic effects)
- Measurement by Belle \rightarrow No signal
- New model calculations by Matevosyan et al connecting G₁[⊥] with single hadron Collins effect in string fragmentation (a bit like worm gear functions)→Interesting to learn about spin momentum correlations in hadronization: sizable asymmetries contradicted by Belle result??
- Mistake found in Boer et. al: Phys.Rev. D97 (2018) no.7, 074019 \rightarrow Need weighted asymmetry including dependence on P_{hT}
- Accessible in SIDIS via weighted asymmetries

LAMBDA PRODUCTION

- Inclusion of polarization leads to rich hadronization structure (see e.g. Kanazawa, Metz Pitonyak, Schlegel Phys.Lett. B744 (2015) 385-390, Metz, Pitonyak Phys.Lett. B723 (2013) 365-370
- Longstanding question: Large Λ transverse polarization in unpolarized pp collision
- \rightarrow Polarizing FF $D_{1T}^{\perp}(z, p_{\perp}^2)$?

G₁[⊥]MEASUREMENT IN SIDIS AND e⁺e⁻

New Observable in e⁺e⁻:

$$\begin{pmatrix} \frac{q_T^2 \left(3\sin(\varphi_q - \varphi_R)\sin(\varphi_q - \varphi_{\bar{R}}) + \cos(\varphi_q - \varphi_R)\cos(\varphi_q - \varphi_{\bar{R}})\right)}{M_h \bar{M}_h} \\ = \frac{12\alpha^2 A(y)}{\pi O^2} \sum e_a^2 \left(G_1^{\perp a, [0]} - G_1^{\perp a, [2]}\right) \left(\bar{G}_1^{\perp \bar{a}, [0]} - G_1^{\perp \bar{a}, [2]}\right),$$

Matevosyan., Bacchetta, Boer, Courtoy, Kotzinian, Radici, Thomas: Phys. Rev. D 97, 074019 (2018).

• New Observable in SIDIS with longitudinal target and beam spin asymmetries :

$$\left\langle \frac{P_{h\perp} \sin(\varphi_h - \varphi_R)}{M_h} \right\rangle_{UL} \sim S_L \sum_a e_a^2 g_{1L}^a(x) \ z \ G_1^{\perp a}(z, M_h^2)$$

$$\left\langle \frac{P_{h\perp} \sin(\varphi_h - \varphi_R)}{M_h} \right\rangle_{LU} \sim \lambda_e \sum_a e_a^2 \ f_1^a(x) \ z \ G_1^{\perp a}(z, M_h^2)$$
Matevosyan, Kotzinian ADP-17-42-T1048

a

N.B. Compass did not observe significant asymmetry for unweighted asymmetry

63

