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OUTLINE

@ Large transverse logarithms in NLO BK and instabilities
@ Resummation (double logs) and stability

@ Issues with resummed evolution in projectile rapidity (V)
e Comparison of saturation fronts in Y and 7

e NLO BK in target rapidity (n)

@ Resummed evolution in target rapidity (n) via shifts

e Matching to NLO BK
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NLO BK EVOLUTION
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Evolution of right moving projectile: modes with smaller

longitudinal momentum k™. Soft plus non-soft (in general).
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NLO BK EVOLUTION

Proj: (21,22), q*, ¢~ = 1/22%q" Targ: Q3, 45, qd = Q3/2qy
NLO evolution for Sjo = S(21,22; Q2;Y), with Y =1Ing* /gy :
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LARGE TRANSVERSE LOGARITHMS

Strongly ordered large perturbative dipoles (DLA)
219 K 213 2 293 K 214 2 2oy 2 234 K 1/Q

Linearize, large dipoles strong interaction, reals terms dominate

dr Ve, 2 11 22
d;fz = O{S/ dz %324 (]. — ?1 12 Zés Ag—— In ;5> T13
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NLO>LO, unstable expansion in coupling

Even single iteration leads to negative solution
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UNSTABLE NUMERICAL SOLUTIONS
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TIME ORDERING AND RESUMMATION IN DLA
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Hard to soft projectile evolution: k < p and kt < p*
Time ordering non-trivial, requires: 7, ~ k23 < 7, ~ p*23
Resum to all orders in a non-local equation
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Mathematically equivalent to local equation

dTy, /VQ dz2,
Qg

ay R 243 Z13
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RESUMMATION IN BK

Match local resummed DLA equation to include BK physics
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Resums double logarithms to all orders (and nothing more)
LO BK + NLO double log when truncated to &2
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NUMERICAL SOLUTION
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NUMERICAL SOLUTION
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Considerable speed reduction, perhaps too much?
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TARGET RAPIDITY 7

Target rapidity determines the kinematics
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NB:

Could have started from target DGLAP in n
Change variables from (7, p) to (Y, p)

Get large logarithms in the BK kernel
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IssuEs/COMMENTS WITH EVOLUTION IN Y

@ Initial condition at Y =0 or boundary at n =0 Y =p

@ Erroneous use of MV or GBW type IC leads to unphysical
pushed front

@ v, ~ 1, where is BFKL dynamics? A, seems too small

(compare to DT 03)

@ For DIS express final result in terms of n =Y — p and p
Saturation: target property, need Q*(n)

@ Fronts in Y and 7 very different for relevant & values

e Saturation intercept in Q?(n) looks unphysical
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STARTING THE EVOLUTION

@ Physical initial condition given at n = 0

@ Construct initial condition at unphysical value Y =0
Can do at level of DLA, e.g. for GBW physical IC

22,03 — 25,Q2], (2\ /@, In? szQ?)) for 23,Q3 < 1

Analytically continued backwards DLA evolution to
n=—p<Y=0
Exponentiate to unitarize

e Evolution will not likely reproduce physical IC at n =0
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(A LitTLE) UGLY SOLUTION?
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Difficult to trust solution, not able to solve BC problem
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MORE BEAUTIFUL BUT MOSTLY WRONG SOLUTION

Try GBW IC at Y =07
A mixture of GBW and resummed [C?
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solid: GBW A=T/r?,

Fronts look nice.
They are unphysical.
Why ~, =17
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STEEPNESS OF INITIAL CONDITION

461\ u(y)as s=0.05]
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06 07 08 09 1.0
Velocity functlon v(y) =wy) /v
Saturation saddle point: v/(v;) =0
Front speed: A\, = dInQ?/dY = v(v,) + O(1/Y)
For a, < af ~0.22, v < v = 1 : pulled front
For a, > af ~0.22, 75 > v = 1 : pushed front X

Jo makes IC steep enough for all (relevant) values of a;
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SLOPE AND SPEED FOR THE 7)-FRONT
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Front in Y < Front in 7, physical
Scalingin Y: —InT = ~,(p— A\sY)
Change variable Y =n+p

Scaling in n: —InT = 7,(p — A\sn)

’75 - '78(1 — /\s)

and

As = O(@), difference is NLO. In practice it is large.

- ! b8 l‘w‘ ! ! In1/r? of o __a : . .
T (valid inside diffusion radius)

Physical n-front less steep and faster

Resummed High Energy Non-Linear Evolution at NLO

D. Triantafyllopoulos, ECT*



UNPHYSICAL INTERCEPT IN RESUMMED EVOLUTION

Solve analytically SP condition and/or numerically BK
Determine A, and v, for Y evolution

Transform to A\, and 7, for 7 evolution

as As | s As | %
~0 4.88a, | 0.628 4.88a, | 0.628
0.1 | 0.313 = 3.13@, | 0.847 | 0.456 = 4.56a, | 0.582
0.2 | 0.489 = 2.45a, | 0.977 | 0.957 = 4.78a, | 0.499
0.3 | 0.645 = 2.15a, | 1.250 | 1.820 = 6.06a, | 0.444

Resummed evolution is not reliable for a; = 0.1.
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NLO BK IN THE TARGET RAPIDITY 7 (I)

e Always evolve the projectile: dipoles kernel with projectile
coordinates in transverse space

e Variable change » =Y — p in longitudinal space

S(Y,r) = S(n+In(1/r*Q3),r) = S(n,7)
S(Y,z) = S(n+1n(1/2°Q}) — In(r?/2?),2) = S(n — 6, 2)

0,
Non-local, but at NLO one treats §, ~ O(1) and expands
g(ﬁ - 527 Z) = 5(777 Z) - 5Zasgr7]7’ Z)

To order of accuracy use LO BK for 9S(n, 2)/dn
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NLO BK IN THE TARGET RaAPIDITY 7 (II)

Shift generates new O(a?) term from the O(a,) term
Shift does not modify O(a?) terms
Overall, NLO BK in 1 has the extra term on the r.h.s.

2

=Y s [SuzSay — Suy)

2w (u—2(z-y)" " (2—y)

a? / d?z d*u (z—y)?
(

272

Linearizing: cancel double logs of large dipoles and create

'z (@-y) n (z—y)* (2-y)° 5 symmetric
/(m_z)Q(Z—y)Q : (x—2)2 (x—2)2 Tz + 5y t

Large double logarithms for small daughter dipoles
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SMALL DIPOLES IN n-EVOLUTION. AN INSTABILITY?

~y—plane
Y 3 c+ioco d~v - ~
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: Y
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oT ™ 22 2\ -
#:6@/{) Z—i(l—dshf%)T(n,z) for z<r

No double logarithms in solution due to color transparency.
Perspective not complete: Solution develops anomalous

dimension ~~ large NLO corrections
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INSTABILITY IN n-EVOLUTION AT NLO (I)

Fixed p > 0 and large 7:
as > af ~0.03 ~ two complex conjugate saddle points ~~

oscillating solution

105 as=0.25, p=5 5 a,:=0.25, p=5

100 / 100 /
0.1 0.1 ﬂ I
— T(n) — Tsad(n)

0 5 10 15 20 5 10 15 20
n n

5(yp) = 0.719 + 0.336i
Ty, = 7/Sw(ye) = 9.35
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INSTABILITY IN 7-EVOLUTION AT NLO (II)
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Amplitude positive only at very high p > p(n)

p(n) = &' (ve)n + O(n'/?)

For ai, = 0.25, @' (7e) = 2.26 = 9.03a,.

Larger than LO saturation intercept.
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CONSTRAINTS IN EVOLUTION: FROM Y TO 7

TO in hard to soft Y-evolution, local or non-local, forbids

emission of large daughter dipoles |x—2z|, |ly—z| 2 r = |z —y|

q" I
lnk—+ > lnr—; with 7~ = max{|z—z|, |y—z|}

Make change of variables

1 L1

+ p— p—
2r2g— '’ 2r2 k-
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CONSTRAINTS IN EVOLUTION: FROM Y TO 7

TO contraints becomes

k= r2 2 k= r2
m—>h—=-Ih—<=|ln— >In-—=
q- r2 72 q- r2

TO in n-evolution forbids emission of small daughter dipoles

(or equivalently forbids disparate daughter dipole sizes)

Relevant when scattering small dipole off dense hadron?

Yes, BFKL diffusion ~ not uni-directional evolution
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NON-LOCAL AND LOCAL EQUATION IN 7)

Non-local equation respecting TO in n-evolution

dSay(n) _ & [ Pzl@=y? o\ o0
dn 277/(w—z)2(z_y)2 O(n—A1)0(n—Ay)

[sz(n*Al)Szy(n*AQ) - Smy(n)}

An initial value problem (modulo details)

( 712
In— when |z—z| <,
(x—2)?
0 when 2z — vy,
Al = y
— 0 when |xz—z| >,
\2 0 otherwise.
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CHARACTERISTIC FUNCTION

Truncation of shift to NLO: triple pole with s = Q?
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Shifted: Finite at v =0

% 1
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VELOCITY FUNCTION AND SADDLE POINT
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14 1%
No real saddle point when truncating ~~ expect oscillations

Well defined saddle point with resummation
wp = 1/2 < 5 < 70 = 0.628: pulled front with MV-GBW IC
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MATcHING TO NLO BK IN 7

@ Start with shifted equation (matched to LO BK)
@ Subtract O(a?) contribution
© Add all O(a?) contributions of NLO BK in n

Uncertainty due to details in choosing shift A:
e If matched to NLO BK in 5, error is O(a?)
o If matched to LO BK in 7, error is O(a?)
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NUMERICAL SOLUTION
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GEOMETRIC SCALING

T 1

10° B 10° B

102 B 102 B

104 B 104 B

10° B 10° B

10°® B 108
10710 P=ps 10710 P =P

5 0 5 10 15 20 25 30 35 5 35

Fit in regime above (), up to diffusion radius:

n |7 LO |7 TO
5| 0.741 | 0.753
10 | 0.672 | 0.661
20 | 0.642 | 0.604
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OTHER CORRECTIONS

@ Resum single logarithms for projectile and target DGLAP
@ Running coupling
e Estimate for including remaining regular NLO corrections
dw = £a?, find 6N,/ N ~ T#a, with # ~ 0.35
Still, what done here is a valid step

@ Resummed unstable correction to render it O(as)
o Definite sign (negative)

@ Numerically larger than regular NLO corrections
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CONCLUSIONS

e Very difficult (and not necessary?) to construct front in
projectile rapidity Y

@ Physical front is in terms of target rapidity n

@ Front in n obtained directly : LO plus resummed via shift
@ Front in 7 is faster and less steep

@ Compared to LO: dA;/As >~ O(ay), roughly the same 4
e Can match to full NLO BK evolution
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