Resummed High Energy Non-Linear Evolution at NLO

Dionysios Triantafyllopoulos

ECT*/FBK, Trento, Italy

"Probing Nucleons and Nuclei in High Energy Collisions", Seattle, November 2018

B. Ducloué, E. Iancu, A.H. Mueller, E. Iancu, DT, in preparation

Resummed High Energy Non-Linear Evolution at NLO

D. Triantafyllopoulos, ECT*

3

イロン 人間 とくほ とくほ とう

- Large transverse logarithms in NLO BK and instabilities
- Resummation (double logs) and stability
- Issues with resummed evolution in projectile rapidity (Y)
- $\bullet\,$ Comparison of saturation fronts in Y and η
- NLO BK in target rapidity (η)
- Resummed evolution in target rapidity (η) via shifts
- Matching to NLO BK

イロト イポト イヨト ニヨ

NLO BK EVOLUTION

Evolution of right moving projectile: modes with smaller longitudinal momentum k^+ . Soft plus non-soft (in general).

イロト イヨト イヨト イ

NLO BK EVOLUTION

Proj: (z_1, z_2) , q^+ , $q^- = 1/2z_{12}^2q^+$ Targ: Q_0^2 , q_0^- , $q_0^+ = Q_0^2/2q_0^-$ NLO evolution for $S_{12} \equiv S(z_1, z_2; Q_0^2; Y)$, with $Y = \ln q^+/q_0^+$:

$$\begin{split} \frac{\mathrm{d}S_{12}}{\mathrm{d}Y} &= \frac{\bar{\alpha}_s}{2\pi} \int \frac{\mathrm{d}^2 z_3 z_{12}^2}{z_{13}^2 z_{32}^2} \bigg[1 + \bar{\alpha}_s \bigg(\underbrace{\bar{b} \ln z_{12}^2 \mu^2 - \bar{b} \frac{z_{13}^2 - z_{23}^2}{z_{12}^2} \ln \frac{z_{13}^2}{z_{12}^2}}_{\mathrm{RC: \ choose \ } \mu = 1/z_{ij\min}} \\ &= \underbrace{-\frac{1}{2} \ln \frac{z_{13}^2}{z_{12}^2} \ln \frac{z_{23}^2}{z_{12}^2}}_{\mathrm{TO \ in \ Projectile}} \bigg) \bigg] (S_{13}S_{32} - S_{12}) \\ &= \underbrace{+\frac{\bar{\alpha}_s^2}{8\pi^2} \int \frac{\mathrm{d}^2 z_3 \mathrm{d}^2 z_4}{z_{34}^4} \bigg(\underbrace{-2 + \frac{z_{13}^2 z_{24}^2 + z_{14}^2 z_{23}^2 - 4 z_{12}^2 z_{34}^2}{z_{13}^2 z_{24}^2 - z_{14}^2 z_{23}^2} \ln \frac{z_{13}^2 z_{24}^2}{z_{13}^2 z_{24}^2 - z_{14}^2 z_{23}^2} \bigg) \\ &= \operatorname{Proj \& \ Targ \ DGLAP \ \rightsquigarrow -11/12}}_{\mathrm{Y}(S_{13}S_{34}S_{42} - S_{13}S_{32})} \\ &+ \mathcal{O}(N_f) + \mathcal{O}(1/N_c^2) + \mathrm{regular \ terms} \end{split}$$

D. Triantafyllopoulos, ECT*

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Strongly ordered large perturbative dipoles (DLA)

$$z_{12} \ll z_{13} \simeq z_{23} \ll z_{14} \simeq z_{24} \simeq z_{34} \ll 1/Q_s$$

Linearize, large dipoles strong interaction, reals terms dominate

$$\frac{\mathrm{d}T_{12}}{\mathrm{d}Y} = \bar{\alpha}_s \int_{z_{12}^2}^{1/Q_s^2} \mathrm{d}z_{13}^2 \frac{z_{12}^2}{z_{13}^4} \left(1 - \frac{\bar{\alpha}_s}{2} \ln^2 \frac{z_{13}^2}{z_{12}^2} - \bar{\alpha}_s \frac{11}{12} \ln \frac{z_{13}^2}{z_{12}^2}\right) T_{13}$$

NLO>LO, unstable expansion in coupling Even single iteration leads to negative solution

UNSTABLE NUMERICAL SOLUTIONS

Resummed High Energy Non-Linear Evolution at NLO

D. Triantafyllopoulos, ECT*

TIME ORDERING AND RESUMMATION IN DLA

Hard to soft projectile evolution: $\mathbf{k} \ll \mathbf{p}$ and $k^+ \ll p^+$ Time ordering non-trivial, requires: $\tau_k \sim k^+ z_4^2 \ll \tau_p \sim p^+ z_3^2$ Resum to all orders in a non-local equation

$$\frac{\mathrm{d}T_{12}(Y, z_{12}^2)}{\mathrm{d}Y} = \bar{\alpha}_s \int_{z_{12}^2}^{1/Q_s^2} \frac{\mathrm{d}z_{13}^2}{z_{13}^2} \frac{z_{12}^2}{z_{13}^2} \Theta\left(Y - \ln\frac{z_{13}^2}{z_{12}^2}\right) T\left(Y - \ln\frac{z_{13}^2}{z_{12}^2}, z_{13}^2\right)$$

Mathematically equivalent to local equation

$$\frac{\mathrm{d}T_{12}}{\mathrm{d}Y} = \bar{\alpha}_s \int_{z_{12}^2}^{1/Q_s^2} \frac{\mathrm{d}z_{13}^2}{z_{13}^2} \frac{z_{12}^2}{z_{13}^2} \frac{\mathrm{J}_1\left(2\sqrt{\bar{\alpha}_s \ln^2 \frac{z_{13}^2}{z_{12}^2}}\right)}{\sqrt{\bar{\alpha}_s \ln^2 \frac{z_{13}^2}{z_{12}^2}}} T_{13}$$

Resummed High Energy Non-Linear Evolution at NLO

D. Triantafyllopoulos, ECT*

Match local resummed DLA equation to include BK physics

$$\frac{\mathrm{d}S_{12}}{\mathrm{d}Y} = \frac{\bar{\alpha}_s}{2\pi} \int \frac{\mathrm{d}^2 z_3 z_{12}^2}{z_{13}^2 z_{32}^2} \,\mathcal{K}_{\mathrm{DLA}}\left(\sqrt{\ln\frac{z_{13}^2}{z_{12}^2}\ln\frac{z_{23}^2}{z_{12}^2}}\right) (S_{13}S_{32} - S_{12})$$

with

$$\mathcal{K}_{\text{DLA}}(\rho) = \frac{J_1\left(2\sqrt{\bar{\alpha}_s\rho^2}\right)}{\sqrt{\bar{\alpha}_s\rho^2}} = 1 - \frac{\bar{\alpha}_s\rho^2}{2} + \frac{(\bar{\alpha}_s\rho^2)^2}{12} + \cdots$$

Resums double logarithms to all orders (and nothing more) LO BK + NLO double log when truncated to $\bar{\alpha}_s^2$

・ロッ ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

NUMERICAL SOLUTION

$$\omega_{\rm LO} = \frac{\bar{\alpha}_s}{\gamma} + \frac{\bar{\alpha}_s}{1-\gamma} + \text{regular} \qquad \omega_{\rm NLO} = \frac{\bar{\alpha}_s}{\gamma} + \frac{\bar{\alpha}_s}{1-\gamma} - \frac{\bar{\alpha}_s^2}{(1-\gamma)^3} + \text{regular}$$
$$\bar{\alpha}_s = \frac{1}{\gamma} \left[-\frac{1}{(1-\gamma)^3} + \frac{1}{(1-\gamma)^3} +$$

$$\omega = \frac{\alpha_s}{\gamma} + \frac{1}{2} \left[-(1-\gamma) + \sqrt{(1-\gamma)^2 + 4\bar{\alpha}_s} \right] + \text{regular}$$

Resummed High Energy Non-Linear Evolution at NLO

D. Triantafyllopoulos, ECT*

< □ > < □ > < □ > < □ > < □ >

NUMERICAL SOLUTION

Considerable speed reduction, perhaps too much?

Resummed High Energy Non-Linear Evolution at NLO

D. Triantafyllopoulos, ECT*

Target rapidity determines the kinematics

$$\eta \equiv \ln \frac{1}{x_{\rm Bj}} = \ln \frac{s}{Q^2} = \ln \frac{2q^+q_0^-}{2q^+q^-} = \ln \frac{q_0^-}{q^-}$$
$$= \ln \frac{Q_0^2}{2q_0^+} \frac{2q^+}{Q^2} \to Y - \ln \frac{1}{r^2Q_0^2} \equiv Y - \rho$$

NB:

Could have started from target DGLAP in η Change variables from (η, ρ) to (Y, ρ) Get large logarithms in the BK kernel

イロト イポト イヨト イヨト

Issues/Comments with Evolution in Y

- Initial condition at Y=0 or boundary at $\eta=0 \Leftrightarrow Y=\rho$
- Erroneous use of MV or GBW type IC leads to unphysical pushed front
- $\gamma_s \sim 1$, where is BFKL dynamics? λ_s seems too small (compare to DT 03)
- For DIS express final result in terms of $\eta=Y-\rho$ and ρ Saturation: target property, need $Q_s^2(\eta)$
- Fronts in Y and η very different for relevant $\bar{\alpha}_s$ values
- Saturation intercept in $Q_s^2(\eta)$ looks unphysical

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

STARTING THE EVOLUTION

- Physical initial condition given at $\eta=0$
- Construct initial condition at unphysical value Y = 0Can do at level of DLA, e.g. for GBW physical IC

$$z_{12}^2 Q_0^2 \to z_{12}^2 Q_0^2 \mathbf{J}_0 \left(2\sqrt{\bar{\alpha}_s \ln^2 z_{12}^2 Q_0^2} \right) \quad \text{for} \quad z_{12}^2 Q_0^2 \ll 1$$

Analytically continued backwards DLA evolution to $\eta=-\rho\Leftrightarrow Y=0$ Exponentiate to unitarize

• Evolution will not likely reproduce physical IC at $\eta = 0$

イロン 不得 とくほう イヨン 二日

(A LITTLE) UGLY SOLUTION?

Difficult to trust solution, not able to solve BC problem

イロト イロト イヨト イヨト

More Beautiful but Mostly Wrong Solution

Try GBW IC at Y = 0?

A mixture of GBW and resummed IC?

Fronts look nice.

They are unphysical.

Why $\gamma_s = 1$?

< 一 ▶

STEEPNESS OF INITIAL CONDITION

4.6 $u(\gamma)/\overline{\alpha}_s$ $\overline{\alpha}_{s}=0.05^{\circ}$ $u(\gamma)/\overline{\alpha}_s$ $\overline{\alpha}_{s}=0.15$ 2.755 4.4 4.2 2.750 4.0 2.745 3.8 0.8 0.6 0.7 0.9 1.0 0.88 0.90 0.92 0.94 0.96 0.98 γ Velocity function: $v(\gamma) = \omega(\gamma)/\gamma$ Saturation saddle point: $v'(\gamma_s) = 0$ Front speed: $\lambda_s = d \ln Q_s^2 / dY = v(\gamma_s) + \mathcal{O}(1/Y)$ For $\bar{\alpha}_s < \bar{\alpha}_s^* \simeq 0.22$, $\gamma_s < \gamma_{\rm ic} = 1$: pulled front \checkmark For $\bar{\alpha}_s > \bar{\alpha}_s^* \simeq 0.22$, $\gamma_s > \gamma_{\rm ic} = 1$: pushed front X J_0 makes IC steep enough for all (relevant) values of $\bar{\alpha}_s$

Slope and Speed for the η -Front

Front in $Y \Leftrightarrow$ Front in η , <u>physical</u> Scaling in Y: $-\ln T = \gamma_s(\rho - \lambda_s Y)$ Change variable $Y = \eta + \rho$ Scaling in η : $-\ln \overline{T} = \overline{\gamma}_s(\rho - \overline{\lambda}_s \eta)$ (valid inside diffusion radius)

$$\overline{\gamma}_s = \gamma_s (1 - \lambda_s)$$
 and $\overline{\lambda}_s = \frac{\lambda_s}{1 - \lambda_s}$

 $\lambda_s = O(\bar{\alpha}_s)$, difference is NLO. In practice it is large. Physical η -front less steep and faster

< A > < A > >

Solve analytically SP condition and/or numerically BK Determine λ_s and γ_s for Y evolution Transform to $\bar{\lambda}_s$ and $\bar{\gamma}_s$ for η evolution

$\bar{\alpha}_s$	λ_s	γ_s	$ar{\lambda}_s$	$\bar{\gamma}_s$
$\rightarrow 0$	$4.88\bar{lpha}_s$	0.628	$4.88\bar{lpha}_s$	0.628
0.1	$0.313 = 3.13\bar{\alpha}_s$	0.847	$0.456 = 4.56\bar{\alpha}_s$	0.582
0.2	$0.489 = 2.45\bar{\alpha}_s$	0.977	$0.957 = 4.78\bar{\alpha}_s$	0.499
0.3	$0.645 = 2.15\bar{\alpha}_s$	1.250	$1.820 = \frac{6.06\bar{\alpha}_s}{1.820}$	0.444

<u>Resummed</u> evolution is not reliable for $\bar{\alpha}_s \gtrsim 0.1$.

NLO BK in the Target Rapidity η (I)

- Always evolve the projectile: dipoles kernel with projectile coordinates in transverse space
- \bullet Variable change $\eta = Y \rho$ in longitudinal space

$$S(Y,r) = S(\eta + \ln(1/r^2Q_0^2), r) \equiv \bar{S}(\eta, r)$$

$$S(Y,z) = S(\eta + \ln(1/z^2Q_0^2) - \underbrace{\ln(r^2/z^2)}_{\delta_z}, z) = \bar{S}(\eta - \delta_z, z)$$

Non-local, but at NLO one treats $\delta_z \sim \mathcal{O}(1)$ and expands

$$\bar{S}(\eta - \delta_z, z) = \bar{S}(\eta, z) - \delta_z \frac{\partial \bar{S}(\eta, z)}{\partial \eta}$$

To order of accuracy use LO BK for $\partial \bar{S}(\eta,z)/\partial \eta$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

NLO BK in the Target Rapidity η (II)

Shift generates new $\mathcal{O}(\bar{\alpha}_s^2)$ term from the $\mathcal{O}(\bar{\alpha}_s)$ term Shift does not modify $\mathcal{O}(\bar{\alpha}_s^2)$ terms Overall, NLO BK in η has the extra term on the r.h.s.

$$\frac{\bar{\alpha}_s^2}{2\pi^2} \int \frac{\mathrm{d}^2 \boldsymbol{z} \, \mathrm{d}^2 \boldsymbol{u} \, (\boldsymbol{x} - \boldsymbol{y})^2}{(\boldsymbol{x} - \boldsymbol{u})^2 (\boldsymbol{u} - \boldsymbol{z})^2 (\boldsymbol{z} - \boldsymbol{y})^2} \ln \frac{(\boldsymbol{u} - \boldsymbol{y})^2}{(\boldsymbol{x} - \boldsymbol{y})^2} \, \bar{S}_{\boldsymbol{x} \boldsymbol{u}} \left[\bar{S}_{\boldsymbol{u} \boldsymbol{z}} \bar{S}_{\boldsymbol{z} \boldsymbol{y}} - \bar{S}_{\boldsymbol{u} \boldsymbol{y}} \right]$$

Linearizing: cancel double logs of large dipoles and create

$$-\frac{\bar{\alpha}_s^2}{4\pi} \int \frac{\mathrm{d}^2 \boldsymbol{z} \, (\boldsymbol{x}-\boldsymbol{y})^2}{(\boldsymbol{x}-\boldsymbol{z})^2 (\boldsymbol{z}-\boldsymbol{y})^2} \left[\ln \frac{(\boldsymbol{x}-\boldsymbol{y})^2}{(\boldsymbol{x}-\boldsymbol{z})^2} \ln \frac{(\boldsymbol{z}-\boldsymbol{y})^2}{(\boldsymbol{x}-\boldsymbol{z})^2} \bar{T}_{\boldsymbol{x}\boldsymbol{z}} + \mathrm{symmetric} \right]$$

Large double logarithms for small daughter dipoles

イロト イポト イヨト イヨト 三日

Small Dipoles in η -Evolution. An Instability?

$$\bar{T}(\eta,\rho) = \int_{c-i\infty}^{c+i\infty} \frac{\mathrm{d}\gamma}{2\pi \mathrm{i}} \bar{T}_0(\gamma) \,\mathrm{e}^{\bar{\omega}(\gamma)\eta-\gamma\rho}$$
$$\bar{\omega}(\gamma) = \frac{\bar{\alpha}_s}{\gamma} + \frac{\bar{\alpha}_s}{1-\gamma} - \frac{\bar{\alpha}_s^2}{\gamma^3} + \mathrm{regular}$$

Bad poles not enclosed for $\rho>0$

$$\frac{\partial \bar{T}(\eta, r)}{\partial \eta} \simeq \bar{\alpha}_s \int_0^{r^2} \frac{\mathrm{d}z^2}{z^2} \left(1 - \bar{\alpha}_s \ln^2 \frac{r^2}{z^2} \right) \bar{T}(\eta, z) \quad \text{for} \quad z \ll r$$

No double logarithms in solution due to color transparency. Perspective not complete: Solution develops anomalous dimension \rightsquigarrow large NLO corrections

Resummed High Energy Non-Linear Evolution at NLO

Instability in η -Evolution at NLO (I)

Fixed $\rho > 0$ and large η : $\bar{\alpha}_s > \bar{\alpha}_s^{\rm cr} \simeq 0.03 \rightsquigarrow$ two complex conjugate saddle points \rightsquigarrow oscillating solution

INSTABILITY IN η -EVOLUTION AT NLO (II)

Amplitude positive only at very high $\rho > \hat{\rho}(\eta)$

$$\hat{\rho}(\eta) = \bar{\omega}'(\gamma_{\rm c})\eta + \mathcal{O}(\eta^{1/3})$$

For $\bar{\alpha}_s = 0.25$, $\bar{\omega}'(\gamma_c) = 2.26 = 9.03\bar{\alpha}_s$. Larger than LO saturation intercept.

イロト イヨト イヨト

TO in hard to soft Y-evolution, local or non-local, forbids emission of large daughter dipoles $|x-z|, |y-z| \gtrsim r = |x-y|$

$$\left| \ln rac{q^+}{k^+} > \ln rac{r_>^2}{r^2}
ight| ~~ ext{with} ~~~ r_> = \max\{|m{x} - m{z}|, |m{y} - m{z}|\}$$

Make change of variables

$$q^+ = \frac{1}{2r^2q^-}$$
 , $k^+ = \frac{1}{2r_<^2k^-}$

Resummed High Energy Non-Linear Evolution at NLO

D. Triantafyllopoulos, ECT*

TO contraints becomes

$$\ln \frac{k^-}{q^-} > \ln \frac{r_>^2}{r^2} - \ln \frac{r_<^2}{r^2} \Rightarrow \boxed{\ln \frac{k^-}{q^-} > \ln \frac{r_>^2}{r_<^2}}$$

TO in η -evolution forbids emission of small daughter dipoles (or equivalently forbids disparate daughter dipole sizes)

Relevant when scattering small dipole off dense hadron? Yes, BFKL diffusion ~> not uni-directional evolution

Non-Local and Local Equation in η

Non-local equation respecting TO in η -evolution

$$\frac{\mathrm{d}S_{\boldsymbol{x}\boldsymbol{y}}(\eta)}{\mathrm{d}\eta} = \frac{\bar{\alpha}_s}{2\pi} \int \frac{\mathrm{d}^2 \boldsymbol{z} \, (\boldsymbol{x} - \boldsymbol{y})^2}{(\boldsymbol{x} - \boldsymbol{z})^2 (\boldsymbol{z} - \boldsymbol{y})^2} \,\Theta(\eta - \Delta_1)\Theta(\eta - \Delta_2) \\ \left[S_{\boldsymbol{x}\boldsymbol{z}}(\eta - \Delta_1)S_{\boldsymbol{z}\boldsymbol{y}}(\eta - \Delta_2) - S_{\boldsymbol{x}\boldsymbol{y}}(\eta)\right]$$

An initial value problem (modulo details)

$$\Delta_1 = \begin{cases} \ln \frac{r^2}{(\boldsymbol{x} - \boldsymbol{z})^2} & \text{when } |\boldsymbol{x} - \boldsymbol{z}| \ll r \\ 0 & \text{when } \boldsymbol{z} \to \boldsymbol{y}, \\ \to 0 & \text{when } |\boldsymbol{x} - \boldsymbol{z}| \gg r \\ \ge 0 & \text{otherwise.} \end{cases}$$

D. Triantafyllopoulos, ECT*

< ロ > < 同 > < 三 > < 三 > -

Truncation of shift to NLO: triple pole with $s_0 = Q^2 \checkmark$

$$\omega_{\rm NLO} = \frac{\bar{\alpha}_s}{\gamma} + \frac{\bar{\alpha}_s}{1-\gamma} - \frac{\bar{\alpha}_s^2}{\gamma^3} + \text{regular}$$

Shifted: Finite at $\gamma=0$

$$\omega = \frac{\bar{\alpha}_s}{1 - \gamma} + \underbrace{\frac{1}{2} \left[-\gamma + \sqrt{\gamma^2 + 4\bar{\alpha}_s} \right]}_{\omega_{\text{DLA}}} + \text{regular}$$

Resummed High Energy Non-Linear Evolution at NLO

D. Triantafyllopoulos, ECT*

イロン 不得 とくほう イヨン 二日

VELOCITY FUNCTION AND SADDLE POINT

イロン 人間 とくほ とくほ とう

- Start with shifted equation (matched to LO BK)
- **2** Subtract $\mathcal{O}(\bar{\alpha}_s^2)$ contribution
- $\begin{tabular}{ll} \hline {\cal O}(\bar{\alpha}_s^2) \mbox{ contributions of NLO BK in } \eta \end{tabular}$

Uncertainty due to details in choosing shift Δ :

- If matched to NLO BK in η , error is $\mathcal{O}(\bar{\alpha}_s^3)$
- If matched to LO BK in η , error is ${\cal O}(\bar{lpha}_s^2)$

イロト イポト イヨト イヨト 三日

NUMERICAL SOLUTION

Varying shift according to

$$\Delta_1 = \frac{1 - \kappa^2}{A\kappa^4 + B\kappa^2 + 1} \ln \frac{1}{\kappa^2} \quad \text{with} \quad \kappa = \frac{|\boldsymbol{z} - \boldsymbol{x}|}{r}$$

$$\mathcal{O}(\bar{\alpha}_s^2) \text{ variation in } \lambda$$

D. Triantafyllopoulos, ECT*

Geometric scaling

Fit in regime above Q_s up to diffusion radius:

η	$\gamma_s \; LO$	$\gamma_s \; {\sf TO}$
5	0.741	0.753
10	0.672	0.661
20	0.642	0.604

Resummed High Energy Non-Linear Evolution at NLO

D. Triantafyllopoulos, ECT*

イロト イロト イヨト イヨト

Other Corrections

- Resum single logarithms for projectile and target DGLAP
- Running coupling
- Estimate for including remaining regular NLO corrections $\delta \omega = \pm \bar{\alpha}_s^2$, find $\delta \lambda_s / \lambda_0 \sim \pm \# \bar{\alpha}_s$ with $\# \simeq 0.35$

Still, what done here is a valid step

- Resummed unstable correction to render it $\mathcal{O}(\bar{\alpha}_s)$
- Definite sign (negative)
- Numerically larger than regular NLO corrections

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

- Very difficult (and not necessary?) to construct front in projectile rapidity \boldsymbol{Y}
- Physical front is in terms of target rapidity η
- Front in η obtained directly : LO plus resummed via shift
- Front in η is faster and less steep
- Compared to LO: $\delta\lambda_s/\lambda_s \simeq \mathcal{O}(\bar{\alpha}_s)$, roughly the same γ_s
- Can match to full NLO BK evolution

イロト イポト イヨト ニヨ