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Transversity of the nucleon using hard processes

What is transversity?

Transverse spin content of the proton:
| ↑⟩(x) ∼ |→⟩+ |←⟩
| ↓⟩(x) ∼ |→⟩ − |←⟩

spin along x helicity states

Observables which are sensitive to helicity flip thus give access to
transversity ∆T q(x). Poorly known.

Transversity GPDs are completely unknown experimentally.

For massless (anti)particles, chirality = (-)helicity

Transversity is thus a chiral-odd quantity

Since (in the massless limit) QCD and QED are chiral-even (γµ, γµγ5),
the chiral-odd quantities (1, γ5, [γµ, γν ]) which one wants to measure
should appear in pairs
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Transversity of the nucleon using hard processes: using a two body final
state process?

How to get access to transversity GPDs?

the dominant DA of ρT is of twist 2 and chiral-odd ([γµ, γν ] coupling)

unfortunately γ∗ N↑ → ρT N ′ = 0

This cancellation is true at any order : such a process would require a
helicity transfer of 2 from a photon.

lowest order diagrammatic argument:

γα[γµ, γν ]γα → 0

[Diehl, Gousset, Pire], [Collins, Diehl]
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Transversity of the nucleon using hard processes: using a two body final
state process?

Can one circumvent this vanishing?

This vanishing only occurs at twist 2

At twist 3 this process does not vanish [Ahmad, Goldstein, Liuti],
[Goloskokov, Kroll]

However processes involving twist 3 DAs may face problems with
factorization (end-point singularities)
can be made safe in the high-energy kT −factorization approach

[Anikin, Ivanov, Pire, Sz., Wallon]

One can also consider a 3-body final state process [Ivanov, Pire, Sz.,
Teryaev], [Enberg, Pire, Sz.], [El Beiyad, Pire, Segond, Sz., Wallon.]
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Probing GPDs using ρ meson + photon production

We consider the process γN → γ ρN ′

Collinear factorization of the amplitude for γ +N → γ + ρ+N ′

at large M2
γρ

TH

π

φ φ
ρ

t′

M2
γρ →

φ

ρ

t′

x+ ξ x− ξ

t (small)

N N ′

M2
γρ

GPD

TH

large angle factorization
à la Brodsky Lepage
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Probing chiral-even GPDs using ρ meson + photon production

Processes with 3 body final states can give access to chiral-even GPDs

TH

φ

ρL chiral-even twist 2 DA

t′

x+ ξ x− ξ

t (small)

chiral-even twist 2 GPD

N N ′

M2
γρ

GPD
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Probing chiral-odd GPDs using ρ meson + photon production

Processes with 3 body final states can give access to chiral-odd GPDs

TH

φ

ρT chiral-odd twist 2 DA

t′

x+ ξ x− ξ

t (small)

chiral-odd twist 2 GPD

N N ′

M2
γρ

GPD
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Probing chiral-odd GPDs using ρ meson + photon production

Processes with 3 body final states can give access to chiral-odd GPDs

How did we manage to circumvent the no-go theorem for 2→ 2 processes?

Typical non-zero diagram for a transverse ρ meson

the σ matrices (from DA and GPD sides) do not kill it anymore!

8 / 37



Introduction Access to GPDs through a 3 body final state Non-perturbative ingredients Computation Results Conclusion

Master formula based on leading twist 2 factorization

A ∝
∫ 1

−1

dx

∫ 1

0

dz T (x, ξ, z)×H(x, ξ, t)Φρ(z) + · · ·

Both the DA and the GPD can be
either chiral-even or chiral-odd.

At twist 2 the longitudinal ρ DA is
chiral-even and the transverse ρ DA is
chiral-odd.

Hence we will need both chiral-even
and chiral-odd non-perturbative
building blocks and hard parts.

H ρ

GPD

x + ξ x− ξ

q k

p1 p2

zpρ

(1− z)pρ
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Kinematics

Kinematics to handle GPD in a 3-body final state process

use a Sudakov basis :
light-cone vectors p, n with 2 p · n = s

assume the following kinematics:
∆⊥ ≪ p⊥

M2, m2
ρ ≪ M2

γρ

initial state particle momenta:

qµ = nµ, pµ1 = (1 + ξ) pµ + M2

s(1+ξ)n
µ

final state particle momenta:

pµ2 = (1− ξ) pµ +
M2 + p⃗ 2

t

s(1− ξ)
nµ +∆µ

⊥

kµ = αnµ +
(p⃗t − ∆⃗t/2)

2

αs
pµ + pµ⊥ −

∆µ
⊥

2
,

pµρ = αρ n
µ +

(p⃗t + ∆⃗t/2)
2 +m2

ρ

αρs
pµ−pµ⊥ −

∆µ
⊥

2
,

H ρ

GPD

x + ξ x− ξ

q k

p1 p2

zpρ

(1− z)pρ

∆ ↓
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Non perturbative chiral-even building blocks

Helicity conserving GPDs at twist 2 :
∫

dz−

4π
eixP

+z−⟨p2,λ2|ψ̄q

(

−1
2
z−

)

γ+ψ

(

1
2
z−

)

|p1,λ1⟩

=
1

2P+
ū(p2,λ2)

[

Hq(x, ξ, t)γ+ + Eq(x, ξ, t)
iσα+∆α

2m

]

∫

dz−

4π
eixP

+z−⟨p2,λ2|ψ̄q

(

−1
2
z−

)

γ+γ5ψ

(

1
2
z−

)

|p1,λ1⟩

=
1

2P+
ū(p2, λ2)

[

H̃q(x, ξ, t)γ+γ5 + Ẽq(x, ξ, t)
γ5∆+

2m

]

We will consider the simplest case when ∆⊥ = 0.

In that case and in the forward limit ξ → 0 only the Hq and H̃q terms
survive.

Helicity conserving (vector) DA at twist 2 :

⟨0|ū(0)γµu(x)|ρ0(p, s)⟩ =
pµ√
2
fρ

∫ 1

0

du e−iup·xφ∥(u)
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Non perturbative chiral-odd building blocks

Helicity flip GPD at twist 2 :
∫

dz−

4π
eixP

+z−⟨p2, λ2|ψ̄q

(

−1
2
z−

)

iσ+iψ

(

1
2
z−

)

|p1,λ1⟩

=
1

2P+
ū(p2,λ2)

[

Hq
T (x, ξ, t)iσ

+i + H̃q
T (x, ξ, t)

P+∆i −∆+P i

M2
N

+ Eq
T (x, ξ, t)

γ+∆i −∆+γi

2MN
+ Ẽq

T (x, ξ, t)
γ+P i − P+γi

MN

]

u(p1,λ1)

We will consider the simplest case when ∆⊥ = 0.

In that case and in the forward limit ξ → 0 only the Hq
T term survives.

Transverse ρ DA at twist 2 :

⟨0|ū(0)σµνu(x)|ρ0(p, s)⟩ = i√
2
(ϵµρp

ν − ϵνρpµ)f⊥
ρ

∫ 1

0

du e−iup·x φ⊥(u)
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Models for DAs

Asymptotical DAs

We take the simplistic asymptotic form of the (normalized) DAs:

φ∥(z) = 6z(1− z) ,

φ⊥(z) = 6z(1− z) .
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Model for GPDs: based on the Double Distribution ansatz

Realistic Parametrization of GPDs

GPDs can be represented in terms of Double Distributions [Radyushkin]

based on the Schwinger representation of a toy model for GPDs which has the structure

of a triangle diagram in scalar φ3 theory

Hq(x, ξ, t = 0) =

∫ 1

−1

dβ

∫ 1−|β|

−1+|β|

dα δ(β + ξα− x) fq(β,α)

ansatz for these Double Distributions [Radyushkin]:

chiral-even sector:

fq(β,α, t = 0) = Π(β,α) q(β)Θ(β) −Π(−β,α) q̄(−β)Θ(−β) ,

f̃q(β,α, t = 0) = Π(β,α)∆q(β)Θ(β) +Π(−β,α)∆q̄(−β)Θ(−β) .

chiral-odd sector:

fq
T (β,α, t = 0) = Π(β,α) δq(β)Θ(β) − Π(−β,α) δq̄(−β)Θ(−β) ,

Π(β,α) = 3
4

(1−β)2−α2

(1−β)3
: profile function

simplistic factorized ansatz for the t-dependence:

Hq(x, ξ, t) = Hq(x, ξ, t = 0)× FH(t)

with FH(t) = C2

(t−C)2
a standard dipole form factor (C = .71 GeV)
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Model for GPDs: based on the Double Distribution ansatz

Sets of used PDFs

q(x) : unpolarized PDF [GRV-98]
and [MSTW2008lo, MSTW2008nnlo, ABM11nnlo, CT10nnlo]

∆q(x) polarized PDF [GRSV-2000]

δq(x) : transversity PDF [Anselmino et al.]
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Model for GPDs: based on the Double Distribution ansatz

Typical sets of chiral-even GPDs (C = −1 sector)

ξ = .1 ↔ SγN = 20 GeV2 and M2
γρ = 3.5 GeV2

! 1 .0 ! 0 .5 0 .0 0 .5 1 .0

2

4

6

8

10

12

14

x

Hu(−)(x, ξ)

! 1 .0 ! 0 .5 0 .0 0 .5 1 .0

2

4

6

8

x

Hd(−)(x, ξ)

Hq(−)(x, ξ, t) = Hq(x, ξ, t) +Hq(−x, ξ, t)

five Ansätze for q(x): GRV-98, MSTW2008lo, MSTW2008nnlo, ABM11nnlo, CT10nnlo

! 1 .0 ! 0 .5 0 .5 1 .0
H

! 3

! 2

! 1

1

2

3
H̃u(−)(x, ξ)

! 1 .0 ! 0 .5 0 .5 1 .0
H

! 1 .0

! 0 .5

0 .5

1 .0H̃d(−)(x, ξ)

H̃q(−)(x, ξ, t) = H̃q(x, ξ, t)− H̃q(−x, ξ, t)
“valence” and “standard”: two GRSV Ansätze for ∆q(x) 16 / 37
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Model for GPDs: based on the Double Distribution ansatz

Typical sets of chiral-odd GPDs (C = −1 sector)

ξ = .1 ↔ SγN = 20 GeV2 and M2
γρ = 3.5 GeV2

! 1 .0 ! 0 .5 0 .0 0 .5 1 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

x

Hu(−)
T (x, ξ)

! 1 .0 ! 0 .5 0 .5 1 .0

! 0 .8

! 0 .6

! 0 .4

! 0 .2

x

Hd(−)
T (x, ξ)

Hq(−)
T (x, ξ, t) = Hq

T (x, ξ, t) +Hq
T (−x, ξ, t)

“valence” and “standard”: two GRSV Ansätze for ∆q(x)
⇒ two Ansätze for δq(x)
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Computation of the hard part

20 diagrams to compute

The other half can be deduced by q ↔ q̄ (anti)symmetry
Red diagrams cancel in the chiral-odd case
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Final computation

Final computation

A ∝
∫ 1

−1

dx

∫ 1

0

dz T (x, ξ, z) H(x, ξ, t) Φρ(z)

One performs the z integration analytically
using an asymptotic DA ∝ z(1− z)

One then plugs our GPD models into the
formula and performs the integral w.r.t. x
numerically.

Differential cross section:

dσ
dt du′ dM2

γρ

∣

∣

∣

∣

−t=(−t)min

=
|M|2

32S2
γNM2

γρ(2π)3
.

|M|2 = averaged amplitude squared

Kinematical parameters: S2
γN , M2

γρ and −u′

H ρ

GPD

x + ξ x− ξ

q k

p1 p2

zpρ

(1− z)pρ
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Fully differential cross section

Chiral even cross section
at −t = (−t)min

1 2 3 4 5
0

20

40

60

80

100

120

140

−u′ (GeV2)

dσeven

dM2
γρd(−u′)d(−t)

(pb ·GeV−6)

1 2 3 4 5
0

5

10

15

20

−u′ (GeV2)

dσeven

dM2
γρd(−u′)d(−t)

(pb ·GeV−6)

proton neutron

SγN = 20 GeV2

M2
γρ = 3, 4, 5, 6 GeV2

solid: “valence” model

dotted: “standard” model 20 / 37
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Fully differential cross section

Chiral odd cross section
at −t = (−t)min

1 2 3 4 5
0 .0

0 .5

1 .0

1 .5

2 .0

2 .5

3 .0

3 .5

−u′(GeV2)

dσodd

dM2
γρd(−u′)d(−t)

(pb ·GeV−6)

1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0
0 .0

0 .5

1 .0

1 .5

2 .0

−u′(GeV2)

dσodd

dM2
γρd(−u′)d(−t)

(pb ·GeV−6)

proton neutron
“valence” and “standard” models, “valence“ model only

each of them with ±2σ [S. Melis]

SγN = 20 GeV2

M2
γρ = 3, 4, 5, 6 GeV2
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Phase space integration

Evolution of the phase space in (−t,−u′) plane

large angle scattering: M2
γρ ∼ −u′ ∼ −t′

in practice: −u′ > 1 GeV2 and −t′ > 1 GeV2 and (−t)min ! −t ! .5 GeV2

this ensures large M2
γρ

example: SγN = 20 GeV2

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

−t

−u′

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

1 .4

−t

−u′

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
0 .0

0 .5

1 .0

1 .5

2 .0

−t

−u′

Mγρ = 2.2 GeV2 M2
γρ = 2.5 GeV2 Mγρ = 3 GeV2

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
0

1

2

3

4

−t

−u′

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
0

1

2

3

4

5

6

7

−t

−u′

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
0

2

4

6

8

−t

−u′

Mγρ = 5 GeV2 Mγρ = 8 GeV2 Mγρ = 9 GeV2
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Variation with respect to SγN

Mapping (SγN ,Mγρ) -→ (S̃γN , M̃γρ)

One can save a lot of CPU time:

M(α, ξ) and GPDs(ξ, x)

In the generalized Bjorken limit:

α = −u′

M2
γρ

ξ =
M2

γρ

2(SγN−M2)−M2
γρ

Given SγN (= 20 GeV2), with its grid in M2
γρ, choose another S̃γN .

One can get the corresponding grid in M̃γρ by just keeping the same ξ’s:

M̃2
γρ = M2

γρ

S̃γN −M2

SγN −M2
,

From the grid in −u′, the new grid in −ũ′ is given by just keeping the same α’s:

−ũ′ =
M̃2

γρ

M2
γρ

(−u′) .

⇒ a single set of numerical computations is required (we take SγN = 20 GeV2)
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Single differential cross section

Chiral even cross section

3 4 5 6 7 8 9

2

4

6

8

M2
γρ (GeV2)

dσeven

dM2
γρ

(pb ·GeV−2)

3 4 5 6 7 8 9

0 .2

0 .4

0 .6

0 .8

1 .0

M2
γρ (GeV2)

dσeven

dM2
γρ

(pb ·GeV−2)

proton neutron
“valence” scenario

SγN vary in the set 8, 10, 12, 14, 16, 18, 20 GeV2 (from left to right)
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Single differential cross section

Chiral odd cross section

2 4 6 8 10
0 .00

0 .05

0 .10

0 .15

0 .20

M2
γρ (GeV2)

dσodd

dM2
γρ

(pb ·GeV−2)

SγN = 20GeV2

Various ansätze for the PDFs ∆q used to build the GPD HT :

dotted curves: “standard” scenario

solid curves: “valence” scenario

deep-blue and red curves: central values

light-blue and orange: results with ±2σ.

25 / 37



Introduction Access to GPDs through a 3 body final state Non-perturbative ingredients Computation Results Conclusion

Single differential cross section

Chiral odd cross section

3 4 5 6 7 8 9

0 .05

0 .10

0 .15

0 .20

0 .25

0 .30

M2
γρ(GeV2)

dσodd

dM2
γρ

(pb ·GeV−2)

proton, “valence” scenario

SγN vary in the set 8, 10, 12, 14, 16, 18, 20 GeV2 (from left to right)
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Integrated cross-section

Chiral even cross section

5 10 15 20

5

10

15

20

SγN (GeV2)

σeven (pb)

5 10 15 20

0 .5

1 .0

1 .5

2 .0

2 .5

3 .0

SγN (GeV2)

σeven (pb)

proton neutron

solid red: “valence” scenario

dashed blue: “standard” one
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Integrated cross-section

Chiral odd cross section

5 10 15 20

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

SγN (GeV2)

σodd (pb)

5 10 15 20

0 .1

0 .2

0 .3

0 .4

SγN (GeV2)

σodd (pb)

proton neutron

solid red: “valence” scenario

dashed blue: “standard” one
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Counting rates for 100 days

example: JLab Hall B

untagged incoming γ ⇒ Weizsäcker-Williams distribution

With an expected luminosity of L = 100 nb−1s−1, for 100 days of run:

Chiral even case : ≃ 1.9 105 ρL .

Chiral odd case : ≃ 7.5 103 ρT
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Effects of an experimental angular restriction for the produced γ

Angular distribution of the produced γ, ρL photoproduction (chiral-even cross section)

after boosting to the lab frame

0 10 20 30 40
0 .00

0 .02

0 .04

0 .06

0 .08

0 .10

θ

1
σeven

dσeven

dθ

0 5 10 15 20 25 30 35
0 .00

0 .05

0 .10

0 .15

θ

1
σeven

dσeven

dθ

0 5 10 15 20 25 30
0 .00

0 .05

0 .10

0 .15

0 .20

θ

1
σeven

dσeven

dθ

SγN = 10 GeV2 SγN = 15 GeV2 SγN = 20 GeV2

M2
γρ = 3, 4 GeV2 M2

γρ = 3, 4, 5 GeV2 M2
γρ = 3, 4, 5 GeV2

JLab Hall B detector equipped between 5◦ and 35◦

⇒ this is safe!
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Effects of an experimental angular restriction for the produced γ

Angular distribution of the produced γ, ρL photoproduction (chiral-even cross section)

2 .0 2 .5 3 .0 3 .5 4 .0
0

1

2

3

4

5

6

7

M2
γρ (GeV2)

dσeven

dM2
γρ

(pb ·GeV−2)

2 3 4 5 6 7
0

2

4

6

8

M2
γρ (GeV2)

dσeven

dM2
γρ

(pb ·GeV−2)

2 3 4 5 6 7 8 9
0

2

4

6

8

M2
γρ (GeV2)

dσeven

dM2
γρ

(pb ·GeV−2)

SγN = 10 GeV2 SγN = 15 GeV2 SγN = 20 GeV2

θmax = 35◦, 30◦, 25◦, 20◦, 15◦, 10◦

JLab Hall B detector equipped between 5◦ and 35◦

⇒ this is safe!
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Effects of an experimental angular restriction for the produced γ

Angular distribution of the produced γ, ρT photoproduction (chiral-odd cross section)

after boosting to the lab frame

0 10 20 30 40
0 .00

0 .05

0 .10

0 .15

0 .20

θ

1
σodd

dσodd

dθ

0 10 20 30 40
0 .00

0 .05

0 .10

0 .15

0 .20

0 .25

θ

1
σodd

dσodd

dθ

0 10 20 30 40
0 .00

0 .05

0 .10

0 .15

0 .20

0 .25

0 .30

0 .35

θ

1
σodd

dσodd

dθ

SγN = 10 GeV2 SγN = 15 GeV2 SγN = 20 GeV2

M2
γρ = 3, 4 GeV2 M2

γρ = 3.5, 5, 6.5 GeV2 M2
γρ = 4, 6, 8 GeV2

JLab Hall B detector equipped between 5◦ and 35◦

⇒ this is safe!
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Effects of an experimental angular restriction for the produced γ

Angular distribution of the produced γ, ρT photoproduction (chiral-odd cross section)
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⇒ this is safe!
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Conclusion (1)

High statistics for the chiral-even component: enough to extract H (H̃?)
and test the universality of GPDs

In this chiral-even sector: analogy with Timelike Compton Scattering, the
γρ pair playing the role of the γ∗.

Relative dominance of the chiral-even component w.r.t. the chiral-odd
one: σodd/σeven ∼ 1/25.

possible separation ρL/ρT through an angular analysis of its decay products
Cuts in θγ might help to increase this ratio (allowed by the huge statistics)

Future: study of polarization observables ⇒ sensitive to the interference of
these two amplitudes: very sizable effect expected, of the order of 20%

The Bethe Heitler component (outgoing γ emitted from the incoming
lepton) is:

zero for the chiral-odd case

suppressed for the chiral-even case

Our result can also be applied to electroproduction (Q2 ≠ 0) after adding
Bethe-Heitler contributions and interferences.

Possible measurement at JLab (Hall B, C, D)

A similar study could be performed at COMPASS. EIC, LHC in UPC?
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Conclusion (2)

Collaboration with Goran Duplančić, Kornelija Passek-Kumerički (IRB,
Zagreb), Bernard Pire (CPhT), Samuel Wallon (LPT, Orsay)

We are planing to investigate the process γN → γπ±,0N ′ at one loop

the processes γN → γπ0N ′ and γN → γη0N ′ are of particular interest:
they give an access to the gluonic GPDs at Born order.
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Results

Chiral-even cross section

Contribution of u versus d, ρL photoproduction
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Solid: “valence” model
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u-quark contribution dominates due to the charge effect
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Results

Chiral-even cross section

Contribution of vector versus axial amplitudes, ρL photoproduction
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no interference between the vector and axial amplitudes
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Hard photoproduction of a diphoton with a large invariant mass
A. Pedrak, B. Pire, L. Szymanowski, JW, arXiv:1708.01043

�(q, ✏) +N(p1, s1) ! �(k1, ✏1) + �(k2, ✏2) +N 0(p2, s2)

Figure: Feynman diagrams contributing to the coefficient function of the process
�N ! ��N 0
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Hard photoproduction of a diphoton with a large invariant mass

I Purely electromagnetic process at Born order - as are deep inelastic
scattering (DIS), deeply virtual Compton scattering (DVCS) and timelike
Compton scattering (TCS).

I Insensitive to gluon GPDs.
I No contribution from the badly known chiral-odd quark distributions.
I This study enlarges the range of 2 ! 3 reactions analyzed in the

framework of collinear QCD factorization. Simplest - great tool to study
factorization.
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Coefficient functions and generalized Form Factors

iCFV
q = Tr[iM 6 p] =

� ie3q
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where AV , . . . , AA, . . . depend on photons polarizations and final photons pT .
Denominators read:

D1(x) = s(x+ ⇠ + i"), D2(x) = s↵2(x�⇠ + i"), D3(x) = s↵1(x�⇠ + i")
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Generalized form factors
The scattering amplitude is written in terms of generalized Compton form
factors H

q(⇠), Eq(⇠), H̃q(⇠) and Ẽ
q(⇠) as
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Differential cross section
Choosing as independent kinematical variables {t, u0,M2

��}, the fully
unpolarized differential cross section reads

d�
dM2

��dtd(�u0)
=

1
2

1
(2⇡)332S2

�NM2
��

X

�,�1�2,s1,s2

|T |
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Figure: the M2
�� dependence of the unpolarized differential cross section on a proton

at t = tmin and S�N = 20GeV 2 (full curves) and S�N = 100GeV 2 (dashed curve).
The bounds in u0 are chosen so that both �u0 and �t0 are larger than 1 GeV2.
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Polarization asymmetries

I Circular initial photon polarization cross-section difference reads:

T+T
⇤
+ � T�T

⇤
� ⇠ |�t||pt| ,

so circular polarization asymmetry is of O(�T
Q ).

I Linear initial photon polarization defines the x axis:

✏(q) = (0, 1, 0, 0)

and hence the azimuthal angle � through

pµT = (0, pT cos�, pT sin�, 0).

32 / 44



Azimuthal dependence
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Figure: the azimuthal dependence of the differential cross section d�
dM2

��dtdu0d� at

t = tmin and S�N = 20 GeV2. (M2
�� , u

0) = (3,�2) GeV2 (solid line),
(M2

�� , u
0) = (4,�1) GeV2 (dotted line) and (M2

�� , u
0) = (4,�2) GeV2 (dashed line).

� is the angle between the initial photon polarization and one of the final photon
momentum in the transverse plane.
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Summary - diphoton photoproduction

I Purely electromagnetic process at Born order
I Insensitive to gluon GPDs
I Cross section of the order of TCS which is measurable at JLAB
I Strong azimuthal dependence for linearly polarized photon beam

To be done:
I The O(↵s) corrections to the amplitude need to be calculated.They are

particularly interesting since they open the way to a perturbative proof of
factorization.

I Importance of the timelike vs spacelike nature of the probe with respect to
the size of the NLO corrections; since the hard scales at work in our
process are both the timelike one M2

�� and the spacelike one u0, we are
facing an intermediate case between timelike Compton scattering (TCS)
and spacelike DVCS.

I Leptoproduction needs to be complemented by the analysis of the Bethe
Heitler processes where one or two photons are emitted from the lepton
line. Probably dominating and leading to interesting interference effects.
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Fully differential cross section: π±

Chiral even sector: π±

at −t = (−t)min
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Fully differential cross section: π±

Chiral even sector: π±

at −t = (−t)min
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Single differential cross section: π±

Chiral even sector: π±
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dotted: “standard” model
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Integrated cross-section: π±

Chiral even sector: π±
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Counting rates for 100 days: π±

example: JLab Hall B

untagged incoming γ ⇒ Weizsäcker-Williams distribution

With an expected luminosity of L = 100 nb−1s−1, for 100 days of run:

π+ : ≃ 104

π− : ≃ 4× 104
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